These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 18608339)

  • 21. Continuing periosteal apposition. II: The significance of peak bone mass, strain equilibrium, and age-related activity differentials for mechanical compensation in human tubular bones.
    Lazenby RA
    Am J Phys Anthropol; 1990 Aug; 82(4):473-84. PubMed ID: 2399958
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The growth and age-related origins of bone fragility in men.
    Seeman E
    Calcif Tissue Int; 2004 Aug; 75(2):100-9. PubMed ID: 15383923
    [No Abstract]   [Full Text] [Related]  

  • 23. Transverse periosteal sectioning and femur growth in the rat.
    McLain JB; Vig PS
    Anat Rec; 1983 Oct; 207(2):339-48. PubMed ID: 6650867
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computational simulation of spontaneous bone straightening in growing children.
    Carpenter RD; Carter DR
    Biomech Model Mechanobiol; 2010 Jun; 9(3):317-28. PubMed ID: 19921292
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vitro differentiation potential of the periosteal cells from a membrane bone, the quadratojugal of the embryonic chick.
    Fang J; Hall BK
    Dev Biol; 1996 Dec; 180(2):701-12. PubMed ID: 8954738
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Study of Endochondral Ossification in Human Fetalcartilage Anlagen of Metacarpals: Comparative Morphology of Mineral Deposition in Cartilage and in the Periosteal Bone Matrix.
    Pazzaglia UE; Reguzzoni M; Pagani F; Sibilia V; Congiu T; Salvi AG; Benetti A
    Anat Rec (Hoboken); 2018 Apr; 301(4):571-580. PubMed ID: 29266881
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tensile mechanical strain up-regulates Runx2 and osteogenic factor expression in human periosteal cells: implications for distraction osteogenesis.
    Kanno T; Takahashi T; Ariyoshi W; Tsujisawa T; Haga M; Nishihara T
    J Oral Maxillofac Surg; 2005 Apr; 63(4):499-504. PubMed ID: 15789322
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A new software tool (VA-BATTS) to calculate bending, axial, torsional and transverse shear stresses within bone cross sections having inhomogeneous material properties.
    Kourtis LC; Carter DR; Kesari H; Beaupre GS
    Comput Methods Biomech Biomed Engin; 2008 Oct; 11(5):463-76. PubMed ID: 19230145
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Therapeutic ultrasound induces periosteal ossification without apparent changes in cartilage.
    Naruse K; Mikuni-Takagaki Y; Urabe K; Uchida K; Itoman M
    Connect Tissue Res; 2009; 50(1):55-63. PubMed ID: 19212853
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interstitial fluid flow in the osteon with spatial gradients of mechanical properties: a finite element study.
    Rémond A; Naïli S; Lemaire T
    Biomech Model Mechanobiol; 2008 Dec; 7(6):487-95. PubMed ID: 17990014
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The timing of the onset of osteogenesis in the tibia of the embryonic chick.
    Scott-Savage P; Hall BK
    J Morphol; 1979 Dec; 162(3):453-63. PubMed ID: 529294
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of movement and tissue interactions in the development and growth of bone and secondary cartilage in the clavicle of the embryonic chick.
    Hall BK
    J Embryol Exp Morphol; 1986 Apr; 93():133-52. PubMed ID: 3734681
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Expression of syndecan-3 and tenascin-C: possible involvement in periosteum development.
    Koyama E; Shimazu A; Leatherman JL; Golden EB; Nah HD; Pacifici M
    J Orthop Res; 1996 May; 14(3):403-12. PubMed ID: 8676253
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Advanced quantitative imaging and biomechanical analyses of periosteal fibers in accelerated bone growth.
    Chaudhary R; Lee MS; Mubyana K; Duenwald-Kuehl S; Johnson L; Kaiser J; Vanderby R; Eliceiri KW; Corr DT; Chin MS; Li WJ; Campagnola PJ; Halanski MA
    Bone; 2016 Nov; 92():201-213. PubMed ID: 27612440
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Periosteum: biology, regulation, and response to osteoporosis therapies.
    Allen MR; Hock JM; Burr DB
    Bone; 2004 Nov; 35(5):1003-12. PubMed ID: 15542024
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Growth cartilage calcification and formation of bone trabeculae are late and dissociated events in the endochondral ossification of Rana catesbeiana.
    Felisbino SL; Carvalho HF
    Cell Tissue Res; 2001 Nov; 306(2):319-23. PubMed ID: 11702243
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bone development: interaction of molecular components and biophysical forces.
    Forriol F; Shapiro F
    Clin Orthop Relat Res; 2005 Mar; (432):14-33. PubMed ID: 15738800
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanobiology of mandibular distraction osteogenesis: finite element analyses with a rat model.
    Loboa EG; Fang TD; Parker DW; Warren SM; Fong KD; Longaker MT; Carter DR
    J Orthop Res; 2005 May; 23(3):663-70. PubMed ID: 15885489
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of short-term confinement and exercise on tibia development in growing pigs.
    Weiler U; Salloum BA; Claus R
    J Vet Med A Physiol Pathol Clin Med; 2006 Nov; 53(9):450-5. PubMed ID: 17054479
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Growth of transplants of rat humerus following circumferential division of the periosteum.
    Harkness EM; Trotter WD
    J Anat; 1978 Jun; 126(Pt 2):275-89. PubMed ID: 353011
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.