These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 18608341)

  • 21. Invariant-based anisotropic constitutive models of the healthy and aneurysmal abdominal aortic wall.
    Basciano CA; Kleinstreuer C
    J Biomech Eng; 2009 Feb; 131(2):021009. PubMed ID: 19102568
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A robust anisotropic hyperelastic formulation for the modelling of soft tissue.
    Nolan DR; Gower AL; Destrade M; Ogden RW; McGarry JP
    J Mech Behav Biomed Mater; 2014 Nov; 39():48-60. PubMed ID: 25104546
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A multiscale approach for modelling wave propagation in an arterial segment.
    Pontrelli G
    Comput Methods Biomech Biomed Engin; 2004 Apr; 7(2):79-89. PubMed ID: 15203956
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A polyconvex anisotropic strain-energy function for soft collagenous tissues.
    Itskov M; Ehret AE; Mavrilas D
    Biomech Model Mechanobiol; 2006 Mar; 5(1):17-26. PubMed ID: 16362195
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanical characterization of atherosclerotic arteries using finite-element modeling: feasibility study on mock arteries.
    Pazos V; Mongrain R; Tardif JC
    IEEE Trans Biomed Eng; 2010 Jun; 57(6):1520-8. PubMed ID: 20172784
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Classical and all-floating FETI methods for the simulation of arterial tissues.
    Augustin CM; Holzapfel GA; Steinbach O
    Int J Numer Methods Eng; 2014 Jul; 99(4):290-312. PubMed ID: 26751957
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues.
    Sun W; Sacks MS
    Biomech Model Mechanobiol; 2005 Nov; 4(2-3):190-9. PubMed ID: 16075264
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Towards an orientation-distribution-based multi-scale approach for remodelling biological tissues.
    Menzel A; Harrysson M; Ristinmaa M
    Comput Methods Biomech Biomed Engin; 2008 Oct; 11(5):505-24. PubMed ID: 19230147
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Theoretical and computational investigations of nonlinear wave propagations in arteries. (I)--A theoretical model of nonlinear pulse wave propagations.
    Wu SG; Lee GC
    Sci China B; 1989 Jun; 32(6):711-28. PubMed ID: 2775461
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nonlinear finite element simulation to elucidate the efficacy of slit arteriotomy for end-to-side arterial anastomosis in microsurgery.
    Gu H; Chua A; Tan BK; Chew Hung K
    J Biomech; 2006; 39(3):435-43. PubMed ID: 16214150
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reduced-order preconditioning for bidomain simulations.
    Deo M; Bauer S; Plank G; Vigmond E
    IEEE Trans Biomed Eng; 2007 May; 54(5):938-42. PubMed ID: 17518292
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simulation of discontinuous damage incorporating residual stresses in circumferentially overstretched atherosclerotic arteries.
    Balzani D; Schröder J; Gross D
    Acta Biomater; 2006 Nov; 2(6):609-18. PubMed ID: 16945600
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Advanced modeling strategy for the analysis of heart valve leaflet tissue mechanics using high-order finite element method.
    Mohammadi H; Bahramian F; Wan W
    Med Eng Phys; 2009 Nov; 31(9):1110-7. PubMed ID: 19773193
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A penetration-based finite element method for hyperelastic 3D biphasic tissues in contact. Part II: finite element simulations.
    Un K; Spilker RL
    J Biomech Eng; 2006 Dec; 128(6):934-42. PubMed ID: 17154696
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Studies of biaxial mechanical properties and nonlinear finite element modeling of skin.
    Shang X; Yen MR; Gaber MW
    Mol Cell Biomech; 2010 Jun; 7(2):93-104. PubMed ID: 20936741
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nonlinear anisotropic stress analysis of anatomically realistic cerebral aneurysms.
    Ma B; Lu J; Harbaugh RE; Raghavan ML
    J Biomech Eng; 2007 Feb; 129(1):88-96. PubMed ID: 17227102
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Non-Newtonian blood flow in human right coronary arteries: steady state simulations.
    Johnston BM; Johnston PR; Corney S; Kilpatrick D
    J Biomech; 2004 May; 37(5):709-20. PubMed ID: 15047000
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biomechanical behavior of the arterial wall and its numerical characterization.
    Holzapfel GA; Weizsäcker HW
    Comput Biol Med; 1998 Jul; 28(4):377-92. PubMed ID: 9805198
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Anisotropic constitutive equations and experimental tensile behavior of brain tissue.
    Velardi F; Fraternali F; Angelillo M
    Biomech Model Mechanobiol; 2006 Mar; 5(1):53-61. PubMed ID: 16315049
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Numerical study of nonlinear pulsatile flow in S-shaped curved arteries.
    Qiao AK; Guo XL; Wu SG; Zeng YJ; Xu XH
    Med Eng Phys; 2004 Sep; 26(7):545-52. PubMed ID: 15271282
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.