BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 18608576)

  • 1. Heating applicator based on reentrant cavity with optimized local heating characteristics.
    Ishihara Y; Kameyama Y; Minegishi Y; Wadamori N
    Int J Hyperthermia; 2008 Dec; 24(8):694-704. PubMed ID: 18608576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localized heating characteristics of hyperthermia using a reentrant cavity.
    Ishihara Y; Wadamori N
    J Med Eng Technol; 2008; 32(5):348-57. PubMed ID: 18821413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electromagnetic head-and-neck hyperthermia applicator: experimental phantom verification and FDTD model.
    Paulides MM; Bakker JF; van Rhoon GC
    Int J Radiat Oncol Biol Phys; 2007 Jun; 68(2):612-20. PubMed ID: 17418965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hyperthermia applicator based on a reentrant cavity for localized head and neck tumors.
    Ishihara Y; Gotanda Y; Wadamori N; Matsuda J
    Rev Sci Instrum; 2007 Feb; 78(2):024301. PubMed ID: 17578127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The possibilities of hyperthermia from an engineering standpoint].
    Saitoh Y; Matsuda J; Kato K
    Gan To Kagaku Ryoho; 1989 Apr; 16(4 Pt 2-2):1425-31. PubMed ID: 2730047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-frequency RF hyperthermia: IV--A 27 MHz hybrid applicator for localized deep tumor heating.
    Franconi C; Raganella L; Tiberio CA
    IEEE Trans Biomed Eng; 1991 Mar; 38(3):287-93. PubMed ID: 2066143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regional heating by insertion of dielectrics and rotation of the focused electric field in the hyperthermia.
    Kameyama Y; Ishihara Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4380-3. PubMed ID: 19163684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Measures of specific absorption rate (SAR) in microwave hyperthermic oncology and the influence of the dynamic bolus on clinical practice].
    Marini P; Guiot C; Baiotto B; Gabriele P
    Radiol Med; 2001 Sep; 102(3):159-67. PubMed ID: 11677459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Winner of the "New Investigator Award" at the European Society of Hyperthermia Oncology Meeting 2007. The HYPERcollar: a novel applicator for hyperthermia in the head and neck.
    Paulides MM; Bakker JF; Neufeld E; van der Zee J; Jansen PP; Levendag PC; van Rhoon GC
    Int J Hyperthermia; 2007 Nov; 23(7):567-76. PubMed ID: 18038287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electric-field distribution near rectangular microstrip radiators for hyperthermia heating: theory versus experiment in water.
    Underwood HR; Peterson AF; Magin RL
    IEEE Trans Biomed Eng; 1992 Feb; 39(2):146-53. PubMed ID: 1612617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of a patch antenna applicator for time reversal hyperthemia.
    Dobsícek Trefná H; Vrba J; Persson M
    Int J Hyperthermia; 2010; 26(2):185-97. PubMed ID: 20146572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer-aided design of two-dimensional electric-type hyperthermia applicators using the finite-difference time-domain method.
    Shaw JA; Durney CH; Christensen DA
    IEEE Trans Biomed Eng; 1991 Sep; 38(9):861-70. PubMed ID: 1743734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heating properties of the re-entrant type cavity applicator for brain tumor with several resonant frequencies.
    Suzuki M; Kato K; Hirashima T; Shindo Y; Uzuka T; Takahashi H; Fujii Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3064-7. PubMed ID: 19963557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SAR deposition by curved CFMA-434 applicators for superficial hyperthermia: Measurements and simulations.
    Petra Kok H; Correia D; De Greef M; Van Stam G; Bel A; Crezee J
    Int J Hyperthermia; 2010; 26(2):171-84. PubMed ID: 20146571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An inverse method to optimize heating conditions in RF-capacitive hyperthermia.
    Tsuda N; Kuroda K; Suzuki Y
    IEEE Trans Biomed Eng; 1996 Oct; 43(10):1029-37. PubMed ID: 9214820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of the local SAR distortion by major anatomical structures in a cylindrical neck phantom.
    Paulides MM; Wielheesen DH; Van der Zee J; Van Rhoon GC
    Int J Hyperthermia; 2005 Mar; 21(2):125-40. PubMed ID: 15764355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An edge-element based finite element model of microwave heating in hyperthermia: application to a bolus design.
    Kumaradas JC; Sherar MD
    Int J Hyperthermia; 2002; 18(5):441-53. PubMed ID: 12227930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SAR characteristics of the Sigma-60-Ellipse applicator.
    Fatehi D; van Rhoon GC
    Int J Hyperthermia; 2008 Jun; 24(4):347-56. PubMed ID: 18465419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SAR analysis of the improved resonant cavity applicator with electrical shield and water bolus for deep tumors by a 3-D FEM.
    Shindo Y; Iseki Y; Yokoyama K; Arakawa J; Watanabe K; Kato K; Kubo M; Uzuka T; Takahashi H
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5679-82. PubMed ID: 23367219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feasibility of new heating method of hepatic parenchyma using a sintered MgFe2O4 needle under an alternating magnetic field.
    Sato K; Watanabe Y; Horiuchi A; Yukumi S; Doi T; Yoshida M; Yamamoto Y; Tsunooka N; Kawachi K
    J Surg Res; 2008 May; 146(1):110-6. PubMed ID: 18155250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.