These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 18608588)

  • 1. Microwave thermal imaging of scanned focused ultrasound heating: phantom results.
    Meaney PM; Zhou T; Fanning MW; Geimer SD; Paulsen KD
    Int J Hyperthermia; 2008 Nov; 24(7):523-36. PubMed ID: 18608588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A practical approach to thermography in a hyperthermia/magnetic resonance hybrid system: validation in a heterogeneous phantom.
    Gellermann J; Wlodarczyk W; Ganter H; Nadobny J; Fähling H; Seebass M; Felix R; Wust P
    Int J Radiat Oncol Biol Phys; 2005 Jan; 61(1):267-77. PubMed ID: 15629620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial and Temporal Control of Hyperthermia Using Real Time Ultrasonic Thermal Strain Imaging with Motion Compensation, Phantom Study.
    Foiret J; Ferrara KW
    PLoS One; 2015; 10(8):e0134938. PubMed ID: 26244783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic resonance imaging of thermal coagulation effects in a phantom for calibrating thermal therapy devices.
    Bouchard LS; Bronskill MJ
    Med Phys; 2000 May; 27(5):1141-5. PubMed ID: 10841421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feasibility of MR-temperature mapping of ultrasonic heating from a CMUT.
    Wong SH; Watkins RD; Kupnik M; Pauly KB; Khuri-Yakub BT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Apr; 55(4):811-8. PubMed ID: 18467225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of interstitial thermal coagulation: comparative evaluation of microwave and ultrasound applicators.
    Deardorff DL; Diederich CJ; Nau WH
    Med Phys; 2001 Jan; 28(1):104-17. PubMed ID: 11213915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal contribution of compact bone to intervening tissue-like media exposed to planar ultrasound.
    Moros EG; Novak P; Straube WL; Kolluri P; Yablonskiy DA; Myerson RJ
    Phys Med Biol; 2004 Mar; 49(6):869-86. PubMed ID: 15104313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous radiofrequency (RF) heating and magnetic resonance (MR) thermal mapping using an intravascular MR imaging/RF heating system.
    Qiu B; El-Sharkawy AM; Paliwal V; Karmarkar P; Gao F; Atalar E; Yang X
    Magn Reson Med; 2005 Jul; 54(1):226-30. PubMed ID: 15968681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Method for MRI-guided conformal thermal therapy of prostate with planar transurethral ultrasound heating applicators.
    Chopra R; Burtnyk M; Haider MA; Bronskill MJ
    Phys Med Biol; 2005 Nov; 50(21):4957-75. PubMed ID: 16237234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interstitial ultrasound heating applicator for MR-guided thermal therapy.
    Chopra R; Luginbuhl C; Weymouth AJ; Foster FS; Bronskill MJ
    Phys Med Biol; 2001 Dec; 46(12):3133-45. PubMed ID: 11768496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-invasive determination of tissue thermal parameters from high intensity focused ultrasound treatment monitored by volumetric MRI thermometry.
    Dragonu I; de Oliveira PL; Laurent C; Mougenot C; Grenier N; Moonen CT; Quesson B
    NMR Biomed; 2009 Oct; 22(8):843-51. PubMed ID: 19562728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of thermal damage calculated using magnetic resonance thermometry, with magnetic resonance imaging post-treatment and histology, after interstitial microwave thermal therapy of rabbit brain.
    Sherar MD; Moriarty JA; Kolios MC; Chen JC; Peters RD; Ang LC; Hinks RS; Henkelman RM; Bronskill MJ; Kucharcyk W
    Phys Med Biol; 2000 Dec; 45(12):3563-76. PubMed ID: 11131184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of factors important for transurethral ultrasound prostate heating using MR temperature feedback.
    Chopra R; Wachsmuth J; Burtnyk M; Haider MA; Bronskill MJ
    Phys Med Biol; 2006 Feb; 51(4):827-44. PubMed ID: 16467581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MRI-compatible ultrasound heating system with ring-shaped phased arrays for breast tumor thermal therapy.
    Chen HN; Chen GM; Lin BS; Lien PH; Chen YY; Chen GS; Lin WL
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3726-8. PubMed ID: 24110540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic resonance imaging of temperature changes during interstitial microwave heating: a phantom study.
    Vitkin IA; Moriarty JA; Peters RD; Kolios MC; Gladman AS; Chen JC; Hinks RS; Hunt JW; Wilson BC; Easty AC; Bronskill MJ; Kucharczyk W; Sherar MD; Henkelman RM
    Med Phys; 1997 Feb; 24(2):269-77. PubMed ID: 9048368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catheter-based ultrasound devices and MR thermal monitoring for conformal prostate thermal therapy.
    Diederich CJ; Nau WH; Kinsey A; Ross T; Wootton J; Juang T; Butts-Pauly K; Rieke V; Chen J; Bouley DM; Sommer G
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3664-8. PubMed ID: 19163505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differences in the lesion formation process between focused ultrasound and microwave ablations.
    Chen WS; Wu CC; Fang HY; Liu HL
    Med Phys; 2006 May; 33(5):1346-51. PubMed ID: 16752570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multisectored interstitial ultrasound applicators for dynamic angular control of thermal therapy.
    Kinsey AM; Diederich CJ; Tyreus PD; Nau WH; Rieke V; Pauly KB
    Med Phys; 2006 May; 33(5):1352-63. PubMed ID: 16752571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid motion correction in MR-guided high-intensity focused ultrasound heating using real-time ultrasound echo information.
    de Oliveira PL; de Senneville BD; Dragonu I; Moonen CT
    NMR Biomed; 2010 Nov; 23(9):1103-8. PubMed ID: 20669159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro and in vivo evaluations of increased effective beam width for heat deposition using a split focus high intensity ultrasound (HIFU) transducer.
    Patel PR; Luk A; Durrani A; Dromi S; Cuesta J; Angstadt M; Dreher MR; Wood BJ; Frenkel V
    Int J Hyperthermia; 2008 Nov; 24(7):537-49. PubMed ID: 18608578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.