BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 18608740)

  • 1. Enzyme kinetic and molecular modelling studies of sulphur-containing substrates of phenylalanine 4-monooxygenase.
    Patel NG; Iliadou C; Boonyapiwat B; Barlow DJ; Forbes B; Mitchell SC; Steventon GB
    J Enzyme Inhib Med Chem; 2008 Dec; 23(6):958-63. PubMed ID: 18608740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenylalanine 4-monooxygenase and the S-oxidation of S-carboxymethyl-L-cysteine.
    Goreish AH; Bednar S; Jones H; Mitchell SC; Steventon GB
    Drug Metabol Drug Interact; 2004; 20(3):159-74. PubMed ID: 15508431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mouse recombinant phenylalanine monooxygenase and the S-oxygenation of thioether substrates.
    Steventon GB; Mitchell SC
    J Biochem Mol Toxicol; 2009; 23(2):119-24. PubMed ID: 19367645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenylalanine 4-monooxygenase and the S-oxidation of S-carboxymethyl-L-cysteine in HepG2 cells.
    Boonyapiwat B; Panagopoulos P; Jones H; Mitchell SC; Forbes B; Steventon GB
    Drug Metabol Drug Interact; 2005; 21(1):1-18. PubMed ID: 16086552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of phenylalanine monooxygenase (PAH) activities.
    Steventon GB; Mitchell SC
    Curr Protoc Toxicol; 2009; Chapter 4():Unit4.29. PubMed ID: 23045014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The activity of wild type and mutant phenylalanine hydroxylase with respect to the C-oxidation of phenylalanine and the S-oxidation of S-carboxymethyl-L-cysteine.
    Steventon GB; Mitchell SC; Pérez B; Desviat LR; Ugarte M
    Mol Genet Metab; 2009 Jan; 96(1):27-31. PubMed ID: 19036622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis for ligand-dependent dimerization of phenylalanine hydroxylase regulatory domain.
    Patel D; Kopec J; Fitzpatrick F; McCorvie TJ; Yue WW
    Sci Rep; 2016 Apr; 6():23748. PubMed ID: 27049649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The S-oxidation of S-carboxymethyl-L-cysteine in hepatic cytosolic fractions from BTBR and phenylketonuria enu1 and enu2 mice.
    Steventon GB; Mitchell SC
    Xenobiotica; 2019 Apr; 49(4):495-502. PubMed ID: 29648495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The structural basis of the recognition of phenylalanine and pterin cofactors by phenylalanine hydroxylase: implications for the catalytic mechanism.
    Teigen K; Frøystein NA; Martínez A
    J Mol Biol; 1999 Dec; 294(3):807-23. PubMed ID: 10610798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards the identification of the allosteric Phe-binding site in phenylalanine hydroxylase.
    Carluccio C; Fraternali F; Salvatore F; Fornili A; Zagari A
    J Biomol Struct Dyn; 2016; 34(3):497-507. PubMed ID: 26479306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human phenylalanine monooxygenase and thioether metabolism.
    Boonyapiwat B; Panaretou B; Forbes B; Mitchell SC; Steventon GB
    J Pharm Pharmacol; 2009 Jan; 61(1):63-7. PubMed ID: 19126298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing cofactor specificity in phenylalanine hydroxylase by molecular dynamics simulations.
    Teigen K; Martinez A
    J Biomol Struct Dyn; 2003 Jun; 20(6):733-40. PubMed ID: 12744702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional analysis, using in vitro mutagenesis, of amino acids located in the phenylalanine hydroxylase active site.
    Jennings IG; Cotton RG; Kobe B
    Arch Biochem Biophys; 2000 Dec; 384(2):238-44. PubMed ID: 11368310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superstoichiometric binding of L-Phe to phenylalanine hydroxylase from Caenorhabditis elegans: evolutionary implications.
    Flydal MI; Mohn TC; Pey AL; Siltberg-Liberles J; Teigen K; Martinez A
    Amino Acids; 2010 Nov; 39(5):1463-75. PubMed ID: 20480196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of phenylalanine hydroxylase by phenylalanine does not require binding in the active site.
    Roberts KM; Khan CA; Hinck CS; Fitzpatrick PF
    Biochemistry; 2014 Dec; 53(49):7846-53. PubMed ID: 25453233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The interplay between genotype, metabolic state and cofactor treatment governs phenylalanine hydroxylase function and drug response.
    Staudigl M; Gersting SW; Danecka MK; Messing DD; Woidy M; Pinkas D; Kemter KF; Blau N; Muntau AC
    Hum Mol Genet; 2011 Jul; 20(13):2628-41. PubMed ID: 21527427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The active site residue tyrosine 325 influences iron binding and coupling efficiency in human phenylalanine hydroxylase.
    Miranda FF; Kolberg M; Andersson KK; Geraldes CF; Martínez A
    J Inorg Biochem; 2005 Jun; 99(6):1320-8. PubMed ID: 15917086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenylalanine monooxygenase and the sulfur oxygenation of S-carboxymethyl-L-cysteine in mice.
    Vandenbossche E; Lucas C; Mistry L; Garfield E; Mitchell SC; Steventon GB
    Xenobiotica; 2016; 46(4):379-84. PubMed ID: 26338263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenylalanine 4-monooxygenase and the S-oxidation of S-carboxymethyl-L-cysteine by human cytosolic fractions.
    Boonyapiwat B; Forbes B; Mitchell S; Steventon GB
    Drug Metabol Drug Interact; 2008; 23(3-4):261-82. PubMed ID: 19326770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenylalanine hydroxylase: possible involvement in the S-oxidation of S-carboxymethyl-l-cysteine.
    Boonyapiwat B; Forbes B; Steventon GB
    Anal Biochem; 2004 Dec; 335(1):91-7. PubMed ID: 15519575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.