These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 18608838)

  • 1. Ice friction of flared ice hockey skate blades.
    Federolf PA; Mills R; Nigg B
    J Sports Sci; 2008 Sep; 26(11):1201-8. PubMed ID: 18608838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An on-ice aerobic maximal multistage shuttle skate test for elite adolescent hockey players.
    Leone M; Léger LA; Larivière G; Comtois AS
    Int J Sports Med; 2007 Oct; 28(10):823-8. PubMed ID: 17534782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship Between Physiological Off-Ice Testing, On-Ice Skating, and Game Performance in Division I Female Ice Hockey Players.
    Boland M; Delude K; Miele EM
    J Strength Cond Res; 2019 Jun; 33(6):1619-1628. PubMed ID: 29016475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship between body composition, leg strength, anaerobic power, and on-ice skating performance in division I men's hockey athletes.
    Potteiger JA; Smith DL; Maier ML; Foster TS
    J Strength Cond Res; 2010 Jul; 24(7):1755-62. PubMed ID: 20543730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Skating mechanics of change-of-direction manoeuvres in ice hockey players.
    Fortier A; Turcotte RA; Pearsall DJ
    Sports Biomech; 2014 Nov; 13(4):341-50. PubMed ID: 25419626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship Between Skating Economy and Performance During a Repeated-Shift Test in Elite and Subelite Ice Hockey Players.
    Lamoureux NR; Tomkinson GR; Peterson BJ; Fitzgerald JS
    J Strength Cond Res; 2018 Apr; 32(4):1109-1113. PubMed ID: 29324580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Skating crossovers on a motorized flywheel: a preliminary experimental design to test effect on speed and on crossovers.
    Smith AM; Krause DA; Stuart MJ; Montelpare WJ; Sorenson MC; Link AA; Gaz DV; Twardowski CP; Larson DR; Stuart MB
    J Strength Cond Res; 2013 Dec; 27(12):3412-8. PubMed ID: 23539081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An on-ice measurement approach to analyse the biomechanics of ice hockey skating.
    Buckeridge E; LeVangie MC; Stetter B; Nigg SR; Nigg BM
    PLoS One; 2015; 10(5):e0127324. PubMed ID: 25973775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predictors of Speed Using Off-Ice Measures of College Hockey Players.
    Runner AR; Lehnhard RA; Butterfield SA; Tu S; OʼNeill T
    J Strength Cond Res; 2016 Jun; 30(6):1626-32. PubMed ID: 25719922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Off-Ice Resisted Sprints Best Predict All-Out Skating Performance in Varsity Hockey Players.
    Thompson KMA; Safadie A; Ford J; Burr JF
    J Strength Cond Res; 2022 Sep; 36(9):2597-2601. PubMed ID: 33136771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of skating speed with off-ice testing in professional hockey players.
    Mascaro T; Seaver BL; Swanson L
    J Orthop Sports Phys Ther; 1992; 15(2):92-8. PubMed ID: 18796793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of Skating Top Speed, Acceleration, and Multiple Repeated Sprint Speed Ice Hockey Performance Tests.
    Bond CW; Bennett TW; Noonan BC
    J Strength Cond Res; 2018 Aug; 32(8):2273-2283. PubMed ID: 29878985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological correlates of skating performance in women's and men's ice hockey.
    Gilenstam KM; Thorsen K; Henriksson-Larsén KB
    J Strength Cond Res; 2011 Aug; 25(8):2133-42. PubMed ID: 21785292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of ice skating performance with off-ice testing in women's ice hockey players.
    Bracko MR; George JD
    J Strength Cond Res; 2001 Feb; 15(1):116-22. PubMed ID: 11708693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship of off-ice and on-ice performance measures in high school male hockey players.
    Krause DA; Smith AM; Holmes LC; Klebe CR; Lee JB; Lundquist KM; Eischen JJ; Hollman JH
    J Strength Cond Res; 2012 May; 26(5):1423-30. PubMed ID: 22395275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. "At-risk" positioning and hip biomechanics of the Peewee ice hockey sprint start.
    Stull JD; Philippon MJ; LaPrade RF
    Am J Sports Med; 2011 Jul; 39 Suppl():29S-35S. PubMed ID: 21709029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationships to skating performance in competitive hockey players.
    Farlinger CM; Kruisselbrink LD; Fowles JR
    J Strength Cond Res; 2007 Aug; 21(3):915-22. PubMed ID: 17685681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ice friction in speed skating: can klapskates reduce ice frictional loss?
    Houdijk H; Wijker AJ; De Koning JJ; Bobbert MF; De Groot G
    Med Sci Sports Exerc; 2001 Mar; 33(3):499-504. PubMed ID: 11252080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of skating kinetics and kinematics on ice and on a synthetic surface.
    Stidwill TJ; Pearsall D; Turcotte R
    Sports Biomech; 2010 Mar; 9(1):57-64. PubMed ID: 20446640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional kinematics of the knee and ankle joints for three consecutive push-offs during ice hockey skating starts.
    Lafontaine D
    Sports Biomech; 2007 Sep; 6(3):391-406. PubMed ID: 17933200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.