BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 18609546)

  • 1. Continuous bioconversion of n-octane to octanoic acid by recombinant Escherichia coli (alk(+)) growing in a two-liquid-phase Chemostat.
    Favre-Bulle O; Weenink E; Vos T; Preusting H; Witholt B
    Biotechnol Bioeng; 1993 Jan; 41(2):263-72. PubMed ID: 18609546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosynthesis of synthons in two-liquid-phase media.
    Wubbolts MG; Favre-Bulle O; Witholt B
    Biotechnol Bioeng; 1996 Oct; 52(2):301-8. PubMed ID: 18629897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High cell density cultivation of Pseudomonas oleovorans: growth and production of poly (3-hydroxyalkanoates) in two-liquid phase batch and fed-batch systems.
    Preusting H; van Houten R; Hoefs A; van Langenberghe EK; Favre-Bulle O; Witholt B
    Biotechnol Bioeng; 1993 Mar; 41(5):550-6. PubMed ID: 18609586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated two-liquid phase bioconversion and product-recovery processes for the oxidation of alkanes: process design and economic evaluation.
    Mathys RG; Schmid A; Witholt B
    Biotechnol Bioeng; 1999 Aug; 64(4):459-77. PubMed ID: 10397885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Whole-cell bio-oxidation of n-dodecane using the alkane hydroxylase system of P. putida GPo1 expressed in E. coli.
    Grant C; Woodley JM; Baganz F
    Enzyme Microb Technol; 2011 May; 48(6-7):480-6. PubMed ID: 22113020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioconversion of n-octane to octanoic acid by a recombinant Escherichia coli cultured in a two-liquid phase bioreactor.
    Favre-Bulle O; Schouten T; Kingma J; Witholt B
    Biotechnology (N Y); 1991 Apr; 9(4):367-71. PubMed ID: 1367010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization and stability of glucoamylase production by recombinant strains of Aspergillus niger in chemostat culture.
    Withers JM; Swift RJ; Wiebe MG; Robson GD; Punt PJ; van den Hondel CA; Trinci AP
    Biotechnol Bioeng; 1998 Aug; 59(4):407-18. PubMed ID: 10099354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth and exopolysaccharide production during free and immobilized cell chemostat culture of Lactobacillus rhamnosus RW-9595M.
    Bergmaier D; Champagne CP; Lacroix C
    J Appl Microbiol; 2005; 98(2):272-84. PubMed ID: 15659181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accumulation of poly[(R)-3-hydroxyalkanoates] in Pseudomonas oleovorans during growth in batch and chemostat culture with different carbon sources.
    Durner R; Zinn M; Witholt B; Egli T
    Biotechnol Bioeng; 2001 Feb; 72(3):278-88. PubMed ID: 11135197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Medium chain length alkane solvent-cell transfer rates in two-liquid phase, pseudomonas oleovorans cultures.
    Schmid A; Sonnleitner B; Witholt B
    Biotechnol Bioeng; 1998 Oct; 60(1):10-23. PubMed ID: 10099401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of alkane hydroxylase of Pseudomonas oleovorans increases the iron requirement of alk+ bacterial strains.
    Staijen IE; Witholt B
    Biotechnol Bioeng; 1998 Jan; 57(2):228-37. PubMed ID: 10099198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relieving effects of glycine and methionine from acetic acid inhibition in Escherichia coli fermentation.
    Han K; Hong J; Lim HC
    Biotechnol Bioeng; 1993 Feb; 41(3):316-24. PubMed ID: 18609555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced production of human mini-proinsulin in fed-batch cultures at high cell density of Escherichia coli BL21(DE3)[pET-3aT2M2].
    Shin CS; Hong MS; Bae CS; Lee J
    Biotechnol Prog; 1997; 13(3):249-57. PubMed ID: 9190075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [High-cell density cultivation of recombinant Escherichia coli for production of TRAIL by using a 2-stage feeding strategy].
    Zhang Y; Shen YL; Xia XX; Sun AY; Wei DZ; Zhou JS; Zhang GJ; Wang LH; Jiao BH
    Sheng Wu Gong Cheng Xue Bao; 2004 May; 20(3):408-13. PubMed ID: 15971615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of recombinant human growth hormone in Escherichia coli: expression of different precursors and physiological effects of glucose, acetate, and salts.
    Jensen EB; Carlsen S
    Biotechnol Bioeng; 1990 Jun; 36(1):1-11. PubMed ID: 18592603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maintaining rapid growth in moderate-density Escherichia coli fermentations.
    Zawada J; Swartz J
    Biotechnol Bioeng; 2005 Feb; 89(4):407-15. PubMed ID: 15635610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous production of cell-free recombinant proteins using Escherichia coli.
    Yu P; San KY
    Biotechnol Prog; 1993; 9(6):587-93. PubMed ID: 7764347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recombinant protein synthesis and plasmid instability in continuous cultures of Escherichia coli JM103 harboring a high copy number plasmid.
    Ryan W; Parulekar SJ
    Biotechnol Bioeng; 1991 Mar; 37(5):415-29. PubMed ID: 18597388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enantioselective synthesis of L-homophenylalanine by whole cells of recombinant Escherichia coli expressing L-aminoacylase and N-acylamino acid racemase genes from Deinococcus radiodurans BCRC12827.
    Hsu SK; Lo HH; Kao CH; Lee DS; Hsu WH
    Biotechnol Prog; 2006; 22(6):1578-84. PubMed ID: 17137304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Physiology of the growth and supersynthesis of DNA-polymerase in Escherichia coli during 2-stage continuous cultivation].
    Shkidchenko AN; Soktoev SA; Gurina LV; Golovlev EL
    Mikrobiologiia; 1985; 54(3):392-7. PubMed ID: 3900649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.