These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 18609554)

  • 1. Biological sulfuric acid transformation: Reactor design and process optimization.
    Stucki G; Hanselmann KW; Hürzeler RA
    Biotechnol Bioeng; 1993 Feb; 41(3):303-15. PubMed ID: 18609554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anaerobic treatment for C and S removal in "zero-discharge" paper mills: effects of process design on S removal efficiencies.
    van Lier JB; Lens PN; Pol LW
    Water Sci Technol; 2001; 44(4):189-95. PubMed ID: 11575084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of pH, CO2, and flow pattern on the autotrophic degradation of hydrogen sulfide in a biotrickling filter.
    Jin Y; Veiga MC; Kennes C
    Biotechnol Bioeng; 2005 Nov; 92(4):462-71. PubMed ID: 16025537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of hydraulic retention time and sulfide toxicity on ethanol and acetate oxidation in sulfate-reducing metal-precipitating fluidized-bed reactor.
    Kaksonen AH; Franzmann PD; Puhakka JA
    Biotechnol Bioeng; 2004 May; 86(3):332-43. PubMed ID: 15083513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial sulfate reduction in a liquid-solid fluidized bed reactor.
    Nagpal S; Chuichulcherm S; Peeva L; Livingston A
    Biotechnol Bioeng; 2000 Nov; 70(4):370-80. PubMed ID: 11005919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ methane enrichment in anaerobic digestion.
    Hayes TD; Isaacson HR; Pfeffer JT; Liu YM
    Biotechnol Bioeng; 1990 Jan; 35(1):73-86. PubMed ID: 18588234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gas phase H(2)S product recovery in a packed bed bioreactor with immobilized sulfate-reducing bacteria.
    McMahon MJ; Daugulis AJ
    Biotechnol Lett; 2008 Mar; 30(3):467-73. PubMed ID: 17972017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sulfate reduction during the acidification of sucrose at pH 5 under thermophilic (55 degrees C) conditions. II: effect of sulfide and COD/SO(2-)(4) ratio.
    Lopes SI; Capela MI; Lens PN
    Bioresour Technol; 2010 Jun; 101(12):4278-84. PubMed ID: 20171883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulfide oxidation at halo-alkaline conditions in a fed-batch bioreactor.
    van den Bosch PL; van Beusekom OC; Buisman CJ; Janssen AJ
    Biotechnol Bioeng; 2007 Aug; 97(5):1053-63. PubMed ID: 17216660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of acetate, propionate and butyrate removal in the treatment of a semi-synthetic landfill leachate on anaerobic filter.
    Gourdon R; Comel C; Vermande P; Véron J
    Biotechnol Bioeng; 1989 Apr; 33(9):1167-81. PubMed ID: 18588035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Treatment of H2S using a horizontal biotrickling filter based on biological activated carbon: reactor setup and performance evaluation.
    Duan H; Koe LC; Yan R
    Appl Microbiol Biotechnol; 2005 Apr; 67(1):143-9. PubMed ID: 15538552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance of a down-flow fluidized bed reactor under sulfate reduction conditions using volatile fatty acids as electron donors.
    Celis-García LB; Razo-Flores E; Monroy O
    Biotechnol Bioeng; 2007 Jul; 97(4):771-9. PubMed ID: 17154309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of biogenic sulfide production in a packed-bed bioreactor via critical inoculum design and carrier material selection.
    McMahon MJ; Daugulis AJ
    Biotechnol Bioeng; 2008 Aug; 100(5):855-63. PubMed ID: 18350591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Column experiments for microbiological treatment of acid mine drainage: low-temperature, low-pH and matrix investigations.
    Tsukamoto TK; Killion HA; Miller GC
    Water Res; 2004 Mar; 38(6):1405-18. PubMed ID: 15016517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological sulphate reduction using gas-lift reactors fed with hydrogen and carbon dioxide as energy and carbon source.
    van Houten RT; Pol LW; Lettinga G
    Biotechnol Bioeng; 1994 Aug; 44(5):586-94. PubMed ID: 18618794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodesulfurization of flue gases and other sulfate/sulfite waste streams using immobilized mixed sulfate-reducing bacteria.
    Selvaraj PT; Little MH; Kaufman EN
    Biotechnol Prog; 1997; 13(5):583-9. PubMed ID: 9376112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selenate removal in methanogenic and sulfate-reducing upflow anaerobic sludge bed reactors.
    Lenz M; Hullebusch ED; Hommes G; Corvini PF; Lens PN
    Water Res; 2008 Apr; 42(8-9):2184-94. PubMed ID: 18177686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of hydraulic retention time on sulfate reduction in a carbon monoxide fed thermophilic gas lift reactor.
    Sipma J; Osuna MB; Lettinga G; Stams AJ; Lens PN
    Water Res; 2007 May; 41(9):1995-2003. PubMed ID: 17336364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae.
    Najafpour G; Younesi H; Syahidah Ku Ismail K
    Bioresour Technol; 2004 May; 92(3):251-60. PubMed ID: 14766158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.