These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 1861004)

  • 1. Absorption of finite amplitude focused ultrasound.
    Dalecki D; Carstensen EL; Parker KJ; Bacon DR
    J Acoust Soc Am; 1991 May; 89(5):2435-47. PubMed ID: 1861004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling of pulsed finite-amplitude focused sound beams in time domain.
    Tavakkoli J; Cathignol D; Souchon R; Sapozhnikov OA
    J Acoust Soc Am; 1998 Oct; 104(4):2061-72. PubMed ID: 10491689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FDTD simulation of finite-amplitude pressure and temperature fields for biomedical ultrasound.
    Hallaj IM; Cleveland RO
    J Acoust Soc Am; 1999 May; 105(5):L7-12. PubMed ID: 10335650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of two theoretical models for predicting non-linear propagation in medical ultrasound fields.
    Bacon DR; Baker AC
    Phys Med Biol; 1989 Nov; 34(11):1633-43. PubMed ID: 2685835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of high intensity focused ultrasound transducers using acoustic streaming.
    Hariharan P; Myers MR; Robinson RA; Maruvada SH; Sliwa J; Banerjee RK
    J Acoust Soc Am; 2008 Mar; 123(3):1706-19. PubMed ID: 18345858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time domain simulation of nonlinear acoustic beams generated by rectangular pistons with application to harmonic imaging.
    Yang X; Cleveland RO
    J Acoust Soc Am; 2005 Jan; 117(1):113-23. PubMed ID: 15704404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nearfield of a piston source of ultrasound in an absorbing medium.
    Nyborg WL; Steele RB
    J Acoust Soc Am; 1985 Nov; 78(5):1882-91. PubMed ID: 4067083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Absorption in liver at the focus of an ultrasonic shock wave field.
    Fry FJ; Reilly CR; Dines KA; Etchison MR; Trauner EJ
    Ultrasound Med Biol; 1991; 17(1):65-9. PubMed ID: 2021013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Losses in tissue associated with finite amplitude ultrasound transmission.
    Fry FJ; Dines KA; Reilly CR; Goss SA
    Ultrasound Med Biol; 1989; 15(5):481-97. PubMed ID: 2781679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite amplitude measurements of the nonlinear parameter B/A for liquid mixtures spanning a range relevant to tissue harmonic mode.
    Wallace KD; Lloyd CW; Holland MR; Miller JG
    Ultrasound Med Biol; 2007 Apr; 33(4):620-9. PubMed ID: 17343980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Density, ultrasound velocity, acoustic impedance, reflection and absorption coefficient determination of liquids via multiple reflection method.
    Hoche S; Hussein MA; Becker T
    Ultrasonics; 2015 Mar; 57():65-71. PubMed ID: 25465962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurements of harmonic generation in a focused finite-amplitude sound beam.
    Averkiou MA; Hamilton MF
    J Acoust Soc Am; 1995 Dec; 98(6):3439-42. PubMed ID: 8550950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plane wave source with minimal harmonic distortion for investigating nonlinear acoustic properties.
    Lloyd CW; Wallace KD; Holland MR; Miller JG
    J Acoust Soc Am; 2007 Jul; 122(1):91-6. PubMed ID: 17614467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Moderately nonlinear ultrasound propagation in blood-mimicking fluid.
    Kharin NA; Vince DG
    Ultrasound Med Biol; 2004 Apr; 30(4):501-9. PubMed ID: 15121252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling power law absorption and dispersion in viscoelastic solids using a split-field and the fractional Laplacian.
    Treeby BE; Cox BT
    J Acoust Soc Am; 2014 Oct; 136(4):1499-510. PubMed ID: 25324054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Full-wave modeling of therapeutic ultrasound: nonlinear ultrasound propagation in ideal fluids.
    Ginter S; Liebler M; Steiger E; Dreyer T; Riedlinger RE
    J Acoust Soc Am; 2002 May; 111(5 Pt 1):2049-59. PubMed ID: 12051425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analytical method for describing the paraxial region of finite amplitude sound beams.
    Hamilton MF; Khokhlova VA; Rudenko OV
    J Acoust Soc Am; 1997 Mar; 101(3):1298-308. PubMed ID: 9069621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental investigation of chair type, row spacing, occupants, and carpet on theatre chair absorption.
    Choi YJ; Bradley JS; Jeong DU
    J Acoust Soc Am; 2015 Jan; 137(1):105-16. PubMed ID: 25618043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Propagation of finite amplitude sound through turbulence: modeling with geometrical acoustics and the parabolic approximation.
    Blanc-Benon P; Lipkens B; Dallois L; Hamilton MF; Blackstock DT
    J Acoust Soc Am; 2002 Jan; 111(1 Pt 2):487-98. PubMed ID: 11837954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite difference modelling of the temperature rise in non-linear medical ultrasound fields.
    Divall SA; Humphrey VF
    Ultrasonics; 2000 Mar; 38(1-8):273-7. PubMed ID: 10829673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.