BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1249 related articles for article (PubMed ID: 18611006)

  • 21. Selective gas adsorption and separation in metal-organic frameworks.
    Li JR; Kuppler RJ; Zhou HC
    Chem Soc Rev; 2009 May; 38(5):1477-504. PubMed ID: 19384449
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular simulation of adsorption and diffusion of hydrogen in metal-organic frameworks.
    Yang Q; Zhong C
    J Phys Chem B; 2005 Jun; 109(24):11862-4. PubMed ID: 16852458
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-capacity methane storage in metal-organic frameworks M2(dhtp): the important role of open metal sites.
    Wu H; Zhou W; Yildirim T
    J Am Chem Soc; 2009 Apr; 131(13):4995-5000. PubMed ID: 19275154
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adsorption of gases and vapors on nanoporous Ni2(4,4'-Bipyridine)3(NO3)4 metal-organic framework materials templated with methanol and ethanol: structural effects in adsorption kinetics.
    Fletcher AJ; Cussen EJ; Bradshaw D; Rosseinsky MJ; Thomas KM
    J Am Chem Soc; 2004 Aug; 126(31):9750-9. PubMed ID: 15291578
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tuning hydrogen sorption properties of metal-organic frameworks by postsynthetic covalent modification.
    Wang Z; Tanabe KK; Cohen SM
    Chemistry; 2010 Jan; 16(1):212-7. PubMed ID: 19918824
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microporous manganese formate: a simple metal-organic porous material with high framework stability and highly selective gas sorption properties.
    Dybtsev DN; Chun H; Yoon SH; Kim D; Kim K
    J Am Chem Soc; 2004 Jan; 126(1):32-3. PubMed ID: 14709045
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct observation of hydrogen adsorption sites and nanocage formation in metal-organic frameworks.
    Yildirim T; Hartman MR
    Phys Rev Lett; 2005 Nov; 95(21):215504. PubMed ID: 16384156
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pd nanoparticles embedded into a metal-organic framework: synthesis, structural characteristics, and hydrogen sorption properties.
    Zlotea C; Campesi R; Cuevas F; Leroy E; Dibandjo P; Volkringer C; Loiseau T; Férey G; Latroche M
    J Am Chem Soc; 2010 Mar; 132(9):2991-7. PubMed ID: 20155921
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adsorption of molecular hydrogen on coordinatively unsaturated Ni(II) sites in a nanoporous hybrid material.
    Forster PM; Eckert J; Heiken BD; Parise JB; Yoon JW; Jhung SH; Chang JS; Cheetham AK
    J Am Chem Soc; 2006 Dec; 128(51):16846-50. PubMed ID: 17177435
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exceptionally high acetylene uptake in a microporous metal-organic framework with open metal sites.
    Xiang S; Zhou W; Gallegos JM; Liu Y; Chen B
    J Am Chem Soc; 2009 Sep; 131(34):12415-9. PubMed ID: 19705919
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthesis of MIL-102, a chromium carboxylate metal-organic framework, with gas sorption analysis.
    Surblé S; Millange F; Serre C; Düren T; Latroche M; Bourrelly S; Llewellyn PL; Férey G
    J Am Chem Soc; 2006 Nov; 128(46):14889-96. PubMed ID: 17105299
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydrogen sulfide adsorption on MOFs and MOF/graphite oxide composites.
    Petit C; Mendoza B; Bandosz TJ
    Chemphyschem; 2010 Dec; 11(17):3678-84. PubMed ID: 20945452
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tuning the topology and functionality of metal-organic frameworks by ligand design.
    Zhao D; Timmons DJ; Yuan D; Zhou HC
    Acc Chem Res; 2011 Feb; 44(2):123-33. PubMed ID: 21126015
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metal-organic frameworks with exceptionally high methane uptake: where and how is methane stored?
    Wu H; Simmons JM; Liu Y; Brown CM; Wang XS; Ma S; Peterson VK; Southon PD; Kepert CJ; Zhou HC; Yildirim T; Zhou W
    Chemistry; 2010 May; 16(17):5205-14. PubMed ID: 20358553
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of exposed metal sites in hydrogen storage in MOFs.
    Vitillo JG; Regli L; Chavan S; Ricchiardi G; Spoto G; Dietzel PD; Bordiga S; Zecchina A
    J Am Chem Soc; 2008 Jul; 130(26):8386-96. PubMed ID: 18533719
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly porous and robust 4,8-connected metal-organic frameworks for hydrogen storage.
    Ma L; Mihalcik DJ; Lin W
    J Am Chem Soc; 2009 Apr; 131(13):4610-2. PubMed ID: 19290636
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Self-diffusion and transport diffusion of light gases in metal-organic framework materials assessed using molecular dynamics simulations.
    Skoulidas AI; Sholl DS
    J Phys Chem B; 2005 Aug; 109(33):15760-8. PubMed ID: 16853000
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Selective gas adsorption and unique structural topology of a highly stable guest-free zeolite-type MOF material with N-rich chiral open channels.
    Li JR; Tao Y; Yu Q; Bu XH; Sakamoto H; Kitagawa S
    Chemistry; 2008; 14(9):2771-6. PubMed ID: 18228551
    [TBL] [Abstract][Full Text] [Related]  

  • 39. New isoreticular metal-organic framework materials for high hydrogen storage capacity.
    Sagara T; Ortony J; Ganz E
    J Chem Phys; 2005 Dec; 123(21):214707. PubMed ID: 16356061
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neutron powder diffraction study of D2 sorption in Cu3(1,3,5-benzenetricarboxylate)2.
    Peterson VK; Liu Y; Brown CM; Kepert CJ
    J Am Chem Soc; 2006 Dec; 128(49):15578-9. PubMed ID: 17147353
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 63.