BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

530 related articles for article (PubMed ID: 18611024)

  • 1. Isotope labeling studies on the formation of 5-(hydroxymethyl)-2-furaldehyde (HMF) from sucrose by pyrolysis-GC/MS.
    Perez Locas C; Yaylayan VA
    J Agric Food Chem; 2008 Aug; 56(15):6717-23. PubMed ID: 18611024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A one-pot reaction for biorefinery: combination of solid acid and base catalysts for direct production of 5-hydroxymethylfurfural from saccharides.
    Takagaki A; Ohara M; Nishimura S; Ebitani K
    Chem Commun (Camb); 2009 Nov; (41):6276-8. PubMed ID: 19826693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An efficient catalytic dehydration of fructose and sucrose to 5-hydroxymethylfurfural with protic ionic liquids.
    Tong X; Ma Y; Li Y
    Carbohydr Res; 2010 Aug; 345(12):1698-701. PubMed ID: 20598294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of 5-hydroxymethylfurfural in ionic liquids under high fructose concentration conditions.
    Li C; Zhao ZK; Wang A; Zheng M; Zhang T
    Carbohydr Res; 2010 Sep; 345(13):1846-50. PubMed ID: 20673658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal-free dehydration of glucose to 5-(hydroxymethyl)furfural in ionic liquids with boric acid as a promoter.
    Ståhlberg T; Rodriguez-Rodriguez S; Fristrup P; Riisager A
    Chemistry; 2011 Feb; 17(5):1456-64. PubMed ID: 21268148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Research for thermal stability of fructose, glucose, 5-hydroxymethyl-2-furfural during the process of refining honey of honeyed pill].
    Xian JC; Zhang N; Feng Y; Hong YL
    Zhong Yao Cai; 2011 Sep; 34(9):1434-7. PubMed ID: 22260013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient microwave-assisted synthesis of 5-hydroxymethylfurfural from concentrated aqueous fructose.
    Hansen TS; Woodley JM; Riisager A
    Carbohydr Res; 2009 Dec; 344(18):2568-72. PubMed ID: 19850284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solvent effect on pathways and mechanisms for D-fructose conversion to 5-hydroxymethyl-2-furaldehyde: in situ 13C NMR study.
    Kimura H; Nakahara M; Matubayasi N
    J Phys Chem A; 2013 Mar; 117(10):2102-13. PubMed ID: 23458365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversible and covalent binding of 5-(hydroxymethyl)-2-furaldehyde (HMF) with lysine and selected amino acids.
    Nikolov PY; Yaylayan VA
    J Agric Food Chem; 2011 Jun; 59(11):6099-107. PubMed ID: 21557617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An efficient and heterogeneous recyclable silicotungstic acid with modified acid sites as a catalyst for conversion of fructose and sucrose into 5-hydroxymethylfurfural in superheated water.
    Jadhav AH; Kim H; Hwang IT
    Bioresour Technol; 2013 Mar; 132():342-50. PubMed ID: 23435221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sucrose, glucose, and fructose extraction in aqueous carrot root extracts prepared at different temperatures by means of direct NMR measurements.
    Cazor A; Deborde C; Moing A; Rolin D; This H
    J Agric Food Chem; 2006 Jun; 54(13):4681-6. PubMed ID: 16787015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stability of low concentrations of guanine-based antivirals in sucrose or maltitol solutions.
    Desai D; Rao V; Guo H; Li D; Bolgar M
    Int J Pharm; 2007 Sep; 342(1-2):87-94. PubMed ID: 17583451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation of 5-hydroxymethylfurfural in honey.
    Fallico B; Arena E; Zappala M
    J Food Sci; 2008 Nov; 73(9):C625-31. PubMed ID: 19021792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling sucrose hydrolysis in dilute sulfuric acid solutions at pretreatment conditions for lignocellulosic biomass.
    Bower S; Wickramasinghe R; Nagle NJ; Schell DJ
    Bioresour Technol; 2008 Oct; 99(15):7354-62. PubMed ID: 17616458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic conversion of carbohydrates into 5-hydroxymethylfurfural by germanium(IV) chloride in ionic liquids.
    Zhang Z; Wang Q; Xie H; Liu W; Zhao ZK
    ChemSusChem; 2011 Jan; 4(1):131-8. PubMed ID: 21226223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from D-fructose an sucrose.
    Antal MJ; Mok WS; Richards GN
    Carbohydr Res; 1990 May; 199(1):91-109. PubMed ID: 2379202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient and selective conversion of sucrose to 5-hydroxymethylfurfural promoted by ammonium halides under mild conditions.
    Wang C; Fu L; Tong X; Yang Q; Zhang W
    Carbohydr Res; 2012 Jan; 347(1):182-5. PubMed ID: 22154494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of glucose, fructose and 5-hydroxymethyl-2-furaldehyde on the presystemic metabolism and absorption of glycyrrhizin in rabbits.
    Hou YC; Ching H; Chao PD; Tsai SY; Wen KC; Hsieh PH; Hsiu SL
    J Pharm Pharmacol; 2005 Feb; 57(2):247-51. PubMed ID: 15720790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of hydroxymethylfurfural in domestic high-fructose corn syrup and its toxicity to the honey bee (Apis mellifera).
    LeBlanc BW; Eggleston G; Sammataro D; Cornett C; Dufault R; Deeby T; St Cyr E
    J Agric Food Chem; 2009 Aug; 57(16):7369-76. PubMed ID: 19645504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of 5-hydroxymethyl-2-furfural (HMF) and 5-hydroxymethyl-2-furoic acid during roasting of coffee.
    Murkovic M; Bornik MA
    Mol Nutr Food Res; 2007 Apr; 51(4):390-4. PubMed ID: 17357981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.