BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 18611059)

  • 21. Heat-induced transformation of CdSe-CdS-ZnS core-multishell quantum dots by Zn diffusion into inner layers.
    Yalcin AO; Goris B; van Dijk-Moes RJ; Fan Z; Erdamar AK; Tichelaar FD; Vlugt TJ; Van Tendeloo G; Bals S; Vanmaekelbergh D; Zandbergen HW; van Huis MA
    Chem Commun (Camb); 2015 Feb; 51(16):3320-3. PubMed ID: 25431813
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced Photoelectrochemical Immunosensing Platform Based on CdSeTe@CdS:Mn Core-Shell Quantum Dots-Sensitized TiO2 Amplified by CuS Nanocrystals Conjugated Signal Antibodies.
    Fan GC; Zhu H; Du D; Zhang JR; Zhu JJ; Lin Y
    Anal Chem; 2016 Mar; 88(6):3392-9. PubMed ID: 26910366
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The synthesis of highly water-dispersible and targeted CdS quantum dots and it is used for bioimaging by confocal microscopy.
    Wei G; Yan M; Ma L; Zhang H
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jan; 85(1):288-92. PubMed ID: 22041502
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Surface-modified CdS quantum dots as luminescent probes for sulfadiazine determination.
    Liu M; Xu L; Cheng W; Zeng Y; Yan Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Oct; 70(5):1198-202. PubMed ID: 18201928
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CdSe/CdS/SiO2 core/shell/shell nanoparticles.
    Zhu MQ; Han JJ; Li AD
    J Nanosci Nanotechnol; 2007 Jul; 7(7):2343-8. PubMed ID: 17663250
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Controlled Dopant Migration in CdS/ZnS Core/Shell Quantum Dots.
    Hofman E; Robinson RJ; Li ZJ; Dzikovski B; Zheng W
    J Am Chem Soc; 2017 Jul; 139(26):8878-8885. PubMed ID: 28595009
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Growth of semiconducting nanocrystals of CdS and ZnS.
    Viswanatha R; Sapra S; Amenitsch H; Sartori B; Sarma DD
    J Nanosci Nanotechnol; 2007 Jun; 7(6):1726-9. PubMed ID: 17654930
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Achiral CdSe quantum dots exhibit optical activity in the visible region upon post-synthetic ligand exchange with D- or L-cysteine.
    Tohgha U; Varga K; Balaz M
    Chem Commun (Camb); 2013 Mar; 49(18):1844-6. PubMed ID: 23361413
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ZnSe quantum dots within CdS nanorods: a seeded-growth type-II system.
    Dorfs D; Salant A; Popov I; Banin U
    Small; 2008 Sep; 4(9):1319-23. PubMed ID: 18680096
    [No Abstract]   [Full Text] [Related]  

  • 30. Molecular Recognition of Biomolecules by Chiral CdSe Quantum Dots.
    Mukhina MV; Korsakov IV; Maslov VG; Purcell-Milton F; Govan J; Baranov AV; Fedorov AV; Gun'ko YK
    Sci Rep; 2016 Apr; 6():24177. PubMed ID: 27063962
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Investigation of the internal heterostructure of highly luminescent quantum dot-quantum well nanocrystals.
    Santra PK; Viswanatha R; Daniels SM; Pickett NL; Smith JM; O'Brien P; Sarma DD
    J Am Chem Soc; 2009 Jan; 131(2):470-7. PubMed ID: 19140789
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Circularly polarized luminescent CdS quantum dots prepared in a protein nanocage.
    Naito M; Iwahori K; Miura A; Yamane M; Yamashita I
    Angew Chem Int Ed Engl; 2010 Sep; 49(39):7006-9. PubMed ID: 20740511
    [No Abstract]   [Full Text] [Related]  

  • 33. CdSe and CdSe/CdS core-shell QDs: New approach for synthesis, investigating optical properties and application in pollutant degradation.
    Abbasi S; Molaei M; Karimipour M
    Luminescence; 2017 Nov; 32(7):1137-1144. PubMed ID: 28378916
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preparation of chiral quantum dots.
    Moloney MP; Govan J; Loudon A; Mukhina M; Gun'ko YK
    Nat Protoc; 2015 Apr; 10(4):558-73. PubMed ID: 25741991
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Size reduction of CdSe/ZnS quantum dots by a peptidic amyloid supergelator.
    Zaman MB; Bardelang D; Prakesch M; Leek DM; Naubron JV; Chan G; Wu X; Ripmeester JA; Ratcliffe CI; Yu K
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1178-81. PubMed ID: 22329959
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A method to form semiconductor quantum dot (QD) thin films by igniting a flame at air-liquid interface: CdS and WO3.
    Jadhav AH; Patil SH; Sathaye SD; Patil KR
    J Colloid Interface Sci; 2015 Feb; 439():121-8. PubMed ID: 25463183
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fluorescence-based detection of point mutation in DNA sequences by CdS quantum dot aggregation.
    Kim T; Noh M; Lee H; Joo SW; Lee SY; Lee K
    J Phys Chem B; 2009 Oct; 113(43):14487-90. PubMed ID: 19810696
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanocrystal shape and the mechanism of exciton spin relaxation.
    Scholes GD; Kim J; Wong CY; Huxter VM; Nair PS; Fritz KP; Kumar S
    Nano Lett; 2006 Aug; 6(8):1765-71. PubMed ID: 16895371
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Polyethylenimine-Capped CdS Quantum Dots for Sensitive and Selective Detection of Nitrite in Vegetables and Water.
    Ren HH; Fan Y; Wang B; Yu LP
    J Agric Food Chem; 2018 Aug; 66(33):8851-8858. PubMed ID: 30016094
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanoscale organization of cadmium sulfide quantum dots on structurally persistent dendro-calixarene micelles.
    Perkin KK; Bromley KM; Davis SA; Hirsch A; Böttcher C; Mann S
    Small; 2007 Dec; 3(12):2057-60. PubMed ID: 17987638
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.