BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 18611116)

  • 21. PhRMA CPCDC initiative on predictive models of human pharmacokinetics, part 4: prediction of plasma concentration-time profiles in human from in vivo preclinical data by using the Wajima approach.
    Vuppugalla R; Marathe P; He H; Jones RD; Yates JW; Jones HM; Gibson CR; Chien JY; Ring BJ; Adkison KK; Ku MS; Fischer V; Dutta S; Sinha VK; Björnsson T; Lavé T; Poulin P
    J Pharm Sci; 2011 Oct; 100(10):4111-26. PubMed ID: 21480234
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In silico ADME-Tox modeling: progress and prospects.
    Alqahtani S
    Expert Opin Drug Metab Toxicol; 2017 Nov; 13(11):1147-1158. PubMed ID: 28988506
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-throughput and in silico techniques in drug metabolism and pharmacokinetics.
    van de Waterbeemd H
    Curr Opin Drug Discov Devel; 2002 Jan; 5(1):33-43. PubMed ID: 11865671
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of permeability in drug ADME/PK, interactions and toxicity--presentation of a permeability-based classification system (PCS) for prediction of ADME/PK in humans.
    Fagerholm U
    Pharm Res; 2008 Mar; 25(3):625-38. PubMed ID: 17710514
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Can the Internet help to meet the challenges in ADME and e-ADME?
    Van de Waterbeemd H; De Groot M
    SAR QSAR Environ Res; 2002; 13(3-4):391-401. PubMed ID: 12184380
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prediction of Oral Bioavailability in Rats: Transferring Insights from in Vitro Correlations to (Deep) Machine Learning Models Using in Silico Model Outputs and Chemical Structure Parameters.
    Schneckener S; Grimbs S; Hey J; Menz S; Osmers M; Schaper S; Hillisch A; Göller AH
    J Chem Inf Model; 2019 Nov; 59(11):4893-4905. PubMed ID: 31714067
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In silico approaches for predicting ADME properties of drugs.
    Yamashita F; Hashida M
    Drug Metab Pharmacokinet; 2004 Oct; 19(5):327-38. PubMed ID: 15548844
    [TBL] [Abstract][Full Text] [Related]  

  • 28. QSAR and ADME.
    Hansch C; Leo A; Mekapati SB; Kurup A
    Bioorg Med Chem; 2004 Jun; 12(12):3391-400. PubMed ID: 15158808
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Advances in computationally modeling human oral bioavailability.
    Wang J; Hou T
    Adv Drug Deliv Rev; 2015 Jun; 86():11-6. PubMed ID: 25582307
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ADME evaluation in drug discovery. 6. Can oral bioavailability in humans be effectively predicted by simple molecular property-based rules?
    Hou T; Wang J; Zhang W; Xu X
    J Chem Inf Model; 2007; 47(2):460-3. PubMed ID: 17381169
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The emerging importance of predictive ADME simulation in drug discovery.
    Selick HE; Beresford AP; Tarbit MH
    Drug Discov Today; 2002 Jan; 7(2):109-16. PubMed ID: 11790621
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Advances in Predictions of Oral Bioavailability of Candidate Drugs in Man with New Machine Learning Methodology.
    Fagerholm U; Hellberg S; Spjuth O
    Molecules; 2021 Apr; 26(9):. PubMed ID: 33925103
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predicting ADME properties in silico: methods and models.
    Butina D; Segall MD; Frankcombe K
    Drug Discov Today; 2002 Jun; 7(11):S83-8. PubMed ID: 12047885
    [TBL] [Abstract][Full Text] [Related]  

  • 34. PhRMA CPCDC initiative on predictive models of human pharmacokinetics, part 1: goals, properties of the PhRMA dataset, and comparison with literature datasets.
    Poulin P; Jones HM; Jones RD; Yates JW; Gibson CR; Chien JY; Ring BJ; Adkison KK; He H; Vuppugalla R; Marathe P; Fischer V; Dutta S; Sinha VK; Björnsson T; Lavé T; Ku MS
    J Pharm Sci; 2011 Oct; 100(10):4050-73. PubMed ID: 21523782
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Estimation of ADME properties with substructure pattern recognition.
    Shen J; Cheng F; Xu Y; Li W; Tang Y
    J Chem Inf Model; 2010 Jun; 50(6):1034-41. PubMed ID: 20578727
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In Silico Modeling of Gastrointestinal Drug Absorption: Predictive Performance of Three Physiologically Based Absorption Models.
    Sjögren E; Thörn H; Tannergren C
    Mol Pharm; 2016 Jun; 13(6):1763-78. PubMed ID: 26926043
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In-silico ADME models: a general assessment of their utility in drug discovery applications.
    Gleeson MP; Hersey A; Hannongbua S
    Curr Top Med Chem; 2011; 11(4):358-81. PubMed ID: 21320065
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ADME-Space: a new tool for medicinal chemists to explore ADME properties.
    Bocci G; Carosati E; Vayer P; Arrault A; Lozano S; Cruciani G
    Sci Rep; 2017 Jul; 7(1):6359. PubMed ID: 28743970
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In Silico Absorption, Distribution, Metabolism, Excretion, and Pharmacokinetics (ADME-PK): Utility and Best Practices. An Industry Perspective from the International Consortium for Innovation through Quality in Pharmaceutical Development.
    Lombardo F; Desai PV; Arimoto R; Desino KE; Fischer H; Keefer CE; Petersson C; Winiwarter S; Broccatelli F
    J Med Chem; 2017 Nov; 60(22):9097-9113. PubMed ID: 28609624
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In silico prediction of ADME properties: are we making progress?
    Beresford AP; Segall M; Tarbit MH
    Curr Opin Drug Discov Devel; 2004 Jan; 7(1):36-42. PubMed ID: 14982146
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.