These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 18611267)

  • 21. Chlamydial genes shed light on the evolution of photoautotrophic eukaryotes.
    Becker B; Hoef-Emden K; Melkonian M
    BMC Evol Biol; 2008 Jul; 8():203. PubMed ID: 18627593
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular phylogeny and evolution of the plastid and nuclear encoded cbbX genes in the unicellular red alga Cyanidioschyzon merolae.
    Fujita K; Ehira S; Tanaka K; Asai K; Ohta N
    Genes Genet Syst; 2008 Apr; 83(2):127-33. PubMed ID: 18506096
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plastid genome sequence of the cryptophyte alga Rhodomonas salina CCMP1319: lateral transfer of putative DNA replication machinery and a test of chromist plastid phylogeny.
    Khan H; Parks N; Kozera C; Curtis BA; Parsons BJ; Bowman S; Archibald JM
    Mol Biol Evol; 2007 Aug; 24(8):1832-42. PubMed ID: 17522086
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adaptive innovation of green plants by horizontal gene transfer.
    Chen R; Huangfu L; Lu Y; Fang H; Xu Y; Li P; Zhou Y; Xu C; Huang J; Yang Z
    Biotechnol Adv; 2021; 46():107671. PubMed ID: 33242576
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mosaic origin of the heme biosynthesis pathway in photosynthetic eukaryotes.
    Oborník M; Green BR
    Mol Biol Evol; 2005 Dec; 22(12):2343-53. PubMed ID: 16093570
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ancient gene transfer as a tool in phylogenetic reconstruction.
    Huang J; Gogarten JP
    Methods Mol Biol; 2009; 532():127-39. PubMed ID: 19271182
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A "green" phosphoribulokinase in complex algae with red plastids: evidence for a single secondary endosymbiosis leading to haptophytes, cryptophytes, heterokonts, and dinoflagellates.
    Petersen J; Teich R; Brinkmann H; Cerff R
    J Mol Evol; 2006 Feb; 62(2):143-57. PubMed ID: 16474987
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes.
    Rodríguez-Ezpeleta N; Brinkmann H; Burey SC; Roure B; Burger G; Löffelhardt W; Bohnert HJ; Philippe H; Lang BF
    Curr Biol; 2005 Jul; 15(14):1325-30. PubMed ID: 16051178
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Horizontal gene transfer in eukaryotes: the weak-link model.
    Huang J
    Bioessays; 2013 Oct; 35(10):868-75. PubMed ID: 24037739
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of horizontal gene transfer in the evolution of photosynthetic eukaryotes and their plastids.
    Keeling PJ
    Methods Mol Biol; 2009; 532():501-15. PubMed ID: 19271204
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genomic footprints of a cryptic plastid endosymbiosis in diatoms.
    Moustafa A; Beszteri B; Maier UG; Bowler C; Valentin K; Bhattacharya D
    Science; 2009 Jun; 324(5935):1724-6. PubMed ID: 19556510
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Red and green algal origin of diatom membrane transporters: insights into environmental adaptation and cell evolution.
    Chan CX; Reyes-Prieto A; Bhattacharya D
    PLoS One; 2011; 6(12):e29138. PubMed ID: 22195008
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A new scenario of plastid evolution: plastid primary endosymbiosis before the divergence of the "Plantae," emended.
    Nozaki H
    J Plant Res; 2005 Aug; 118(4):247-55. PubMed ID: 16032387
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An exceptional horizontal gene transfer in plastids: gene replacement by a distant bacterial paralog and evidence that haptophyte and cryptophyte plastids are sisters.
    Rice DW; Palmer JD
    BMC Biol; 2006 Sep; 4():31. PubMed ID: 16956407
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evolutionary dynamics of introns in plastid-derived genes in plants: saturation nearly reached but slow intron gain continues.
    Basu MK; Rogozin IB; Deusch O; Dagan T; Martin W; Koonin EV
    Mol Biol Evol; 2008 Jan; 25(1):111-9. PubMed ID: 17974547
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of the cluster of ribosomal protein genes in the plastid genome of a unicellular red alga Cyanidioschyzon merolae: translocation of the str cluster as an early event in the rhodophyte-chromophyte lineage of plastid evolution.
    Ohta N; Sato N; Nozaki H; Kuroiwa T
    J Mol Evol; 1997 Dec; 45(6):688-95. PubMed ID: 9419246
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessing the bacterial contribution to the plastid proteome.
    Qiu H; Price DC; Weber AP; Facchinelli F; Yoon HS; Bhattacharya D
    Trends Plant Sci; 2013 Dec; 18(12):680-7. PubMed ID: 24139901
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The phylogenetic position of red algae revealed by multiple nuclear genes from mitochondria-containing eukaryotes and an alternative hypothesis on the origin of plastids.
    Nozaki H; Matsuzaki M; Takahara M; Misumi O; Kuroiwa H; Hasegawa M; Shin-i T; Kohara Y; Ogasawara N; Kuroiwa T
    J Mol Evol; 2003 Apr; 56(4):485-97. PubMed ID: 12664168
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Failure to Recover Major Events of Gene Flux in Real Biological Data Due to Method Misapplication.
    Kapust N; Nelson-Sathi S; Schönfeld B; Hazkani-Covo E; Bryant D; Lockhart PJ; Röttger M; Xavier JC; Martin WF
    Genome Biol Evol; 2018 Apr; 10(5):1198-1209. PubMed ID: 29718211
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reconstructing evolution: gene transfer from plastids to the nucleus.
    Bock R; Timmis JN
    Bioessays; 2008 Jun; 30(6):556-66. PubMed ID: 18478535
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.