These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 18611370)

  • 1. Sus out sugars in.
    Gilbert HJ
    Structure; 2008 Jul; 16(7):987-9. PubMed ID: 18611370
    [No Abstract]   [Full Text] [Related]  

  • 2. SusG: a unique cell-membrane-associated alpha-amylase from a prominent human gut symbiont targets complex starch molecules.
    Koropatkin NM; Smith TJ
    Structure; 2010 Feb; 18(2):200-15. PubMed ID: 20159465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Starch catabolism by a prominent human gut symbiont is directed by the recognition of amylose helices.
    Koropatkin NM; Martens EC; Gordon JI; Smith TJ
    Structure; 2008 Jul; 16(7):1105-15. PubMed ID: 18611383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superresolution imaging captures carbohydrate utilization dynamics in human gut symbionts.
    Karunatilaka KS; Cameron EA; Martens EC; Koropatkin NM; Biteen JS
    mBio; 2014 Nov; 5(6):e02172. PubMed ID: 25389179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SusE facilitates starch uptake independent of starch binding in B. thetaiotaomicron.
    Foley MH; Martens EC; Koropatkin NM
    Mol Microbiol; 2018 Jun; 108(5):551-566. PubMed ID: 29528148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemical analysis of interactions between outer membrane proteins that contribute to starch utilization by Bacteroides thetaiotaomicron.
    Cho KH; Salyers AA
    J Bacteriol; 2001 Dec; 183(24):7224-30. PubMed ID: 11717282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Bacteroides thetaiotaomicron outer membrane protein that is essential for utilization of maltooligosaccharides and starch.
    Reeves AR; D'Elia JN; Frias J; Salyers AA
    J Bacteriol; 1996 Feb; 178(3):823-30. PubMed ID: 8550519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis for nutrient acquisition by dominant members of the human gut microbiota.
    Glenwright AJ; Pothula KR; Bhamidimarri SP; Chorev DS; Baslé A; Firbank SJ; Zheng H; Robinson CV; Winterhalter M; Kleinekathöfer U; Bolam DN; van den Berg B
    Nature; 2017 Jan; 541(7637):407-411. PubMed ID: 28077872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of four outer membrane proteins involved in binding starch to the cell surface of Bacteroides thetaiotaomicron.
    Shipman JA; Berleman JE; Salyers AA
    J Bacteriol; 2000 Oct; 182(19):5365-72. PubMed ID: 10986238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional characterization of a gene locus from an uncultured gut Bacteroides conferring xylo-oligosaccharides utilization to Escherichia coli.
    Tauzin AS; Laville E; Xiao Y; Nouaille S; Le Bourgeois P; Heux S; Portais JC; Monsan P; Martens EC; Potocki-Veronese G; Bordes F
    Mol Microbiol; 2016 Nov; 102(4):579-592. PubMed ID: 27573446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis for the flexible recognition of α-glucan substrates by Bacteroides thetaiotaomicron SusG.
    Arnal G; Cockburn DW; Brumer H; Koropatkin NM
    Protein Sci; 2018 Jun; 27(6):1093-1101. PubMed ID: 29603462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic evidence that outer membrane binding of starch is required for starch utilization by Bacteroides thetaiotaomicron.
    Anderson KL; Salyers AA
    J Bacteriol; 1989 Jun; 171(6):3199-204. PubMed ID: 2722748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suggested alternative starch utilization system from the human gut bacterium Bacteroides thetaiotaomicron.
    Chaudet MM; Rose DR
    Biochem Cell Biol; 2016 Jun; 94(3):241-6. PubMed ID: 27093479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological characterization of SusG, an outer membrane protein essential for starch utilization by Bacteroides thetaiotaomicron.
    Shipman JA; Cho KH; Siegel HA; Salyers AA
    J Bacteriol; 1999 Dec; 181(23):7206-11. PubMed ID: 10572122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional assay of Salmonella typhi OmpC using reconstituted large unilamellar vesicles: a general method for characterization of outer membrane proteins.
    Sundara Baalaji N; Mathew MK; Krishnaswamy S
    Biochimie; 2006 Oct; 88(10):1419-24. PubMed ID: 16765505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New regulatory gene that contributes to control of Bacteroides thetaiotaomicron starch utilization genes.
    Cho KH; Cho D; Wang GR; Salyers AA
    J Bacteriol; 2001 Dec; 183(24):7198-205. PubMed ID: 11717279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Sus operon: a model system for starch uptake by the human gut Bacteroidetes.
    Foley MH; Cockburn DW; Koropatkin NM
    Cell Mol Life Sci; 2016 Jul; 73(14):2603-17. PubMed ID: 27137179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical evidence that starch breakdown by Bacteroides thetaiotaomicron involves outer membrane starch-binding sites and periplasmic starch-degrading enzymes.
    Anderson KL; Salyers AA
    J Bacteriol; 1989 Jun; 171(6):3192-8. PubMed ID: 2722747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How do gut microbes break down dietary fiber?
    Terrapon N; Henrissat B
    Trends Biochem Sci; 2014 Apr; 39(4):156-8. PubMed ID: 24613530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physicochemical variation of cyanobacterial starch, the insoluble α-Glucans in cyanobacteria.
    Suzuki E; Onoda M; Colleoni C; Ball S; Fujita N; Nakamura Y
    Plant Cell Physiol; 2013 Apr; 54(4):465-73. PubMed ID: 23299410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.