BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 18611421)

  • 21. Phase inversion dynamics of PLGA solutions related to drug delivery. Part II. The role of solution thermodynamics and bath-side mass transfer.
    Brodbeck KJ; DesNoyer JR; McHugh AJ
    J Control Release; 1999 Dec; 62(3):333-44. PubMed ID: 10528071
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design of a long-term antipsychotic in situ forming implant and its release control method and mechanism.
    Wang L; Wang A; Zhao X; Liu X; Wang D; Sun F; Li Y
    Int J Pharm; 2012 May; 427(2):284-92. PubMed ID: 22387369
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of the test method on in vitro drug release from intravitreal model implants containing dexamethasone or fluorescein sodium in poly (d,l-lactide-co-glycolide) or polycaprolactone.
    Stein S; Auel T; Kempin W; Bogdahn M; Weitschies W; Seidlitz A
    Eur J Pharm Biopharm; 2018 Jun; 127():270-278. PubMed ID: 29490233
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Noninvasive characterization of the effect of varying PLGA molecular weight blends on in situ forming implant behavior using ultrasound imaging.
    Solorio L; Olear AM; Hamilton JI; Patel RB; Beiswenger AC; Wallace JE; Zhou H; Exner AA
    Theranostics; 2012; 2(11):1064-77. PubMed ID: 23227123
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phase separation of in situ forming poly (lactide-co-glycolide acid) implants investigated using a hydrogel-based subcutaneous tissue surrogate and UV-vis imaging.
    Sun Y; Jensen H; Petersen NJ; Larsen SW; Østergaard J
    J Pharm Biomed Anal; 2017 Oct; 145():682-691. PubMed ID: 28803207
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Designing Solvent Exchange-Induced In Situ Forming Gel from Aqueous Insoluble Polymers as Matrix Base for Periodontitis Treatment.
    Srichan T; Phaechamud T
    AAPS PharmSciTech; 2017 Jan; 18(1):194-201. PubMed ID: 26951505
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In situ forming phase-inversion implants for sustained ocular delivery of triamcinolone acetonide.
    Sheshala R; Hong GC; Yee WP; Meka VS; Thakur RRS
    Drug Deliv Transl Res; 2019 Apr; 9(2):534-542. PubMed ID: 29484530
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stability of poly(D,L-lactide-co-glycolide) and leuprolide acetate in in-situ forming drug delivery systems.
    Dong WY; Körber M; López Esguerra V; Bodmeier R
    J Control Release; 2006 Oct; 115(2):158-67. PubMed ID: 16963145
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coloring of PLGA implants to better understand the underlying drug release mechanisms.
    Bode C; Kranz H; Siepmann F; Siepmann J
    Int J Pharm; 2019 Oct; 569():118563. PubMed ID: 31351179
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In situ forming implants for the delivery of metronidazole to periodontal pockets: formulation and drug release studies.
    Kilicarslan M; Koerber M; Bodmeier R
    Drug Dev Ind Pharm; 2014 May; 40(5):619-24. PubMed ID: 24369747
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of polymer type on the dynamics of phase inversion and drug release in injectable in situ gelling systems.
    Liu H; Venkatraman SS
    J Biomater Sci Polym Ed; 2012; 23(1-4):251-66. PubMed ID: 21244721
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of implant formation on drug release kinetics of in situ forming implants.
    Suh MS; Kastellorizios M; Tipnis N; Zou Y; Wang Y; Choi S; Burgess DJ
    Int J Pharm; 2021 Jan; 592():120105. PubMed ID: 33232755
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Review: approaches to develop PLGA based in situ gelling system with low initial burst.
    Ahmed T
    Pak J Pharm Sci; 2015 Mar; 28(2):657-65. PubMed ID: 25730797
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Non-invasive in vivo characterization of release processes in biodegradable polymers by low-frequency electron paramagnetic resonance spectroscopy.
    Mader K; Gallez B; Liu KJ; Swartz HM
    Biomaterials; 1996 Feb; 17(4):457-61. PubMed ID: 8938242
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Delivery of radix ophiopogonis polysaccharide via sucrose acetateisobutyrate-based in situ forming systems alone or combined with itsmono-PEGylation.
    Wang L; Zheng X; Wu F; Shen L; Lin X; Feng Y
    Drug Deliv; 2018 Nov; 25(1):267-277. PubMed ID: 29334805
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An in vitro gel-based system for characterizing and predicting the long-term performance of PLGA in situ forming implants.
    Li Z; Mu H; Weng Larsen S; Jensen H; Østergaard J
    Int J Pharm; 2021 Nov; 609():121183. PubMed ID: 34653562
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of an in situ forming PLGA drug delivery system I. Characterization of a non-aqueous protein precipitation.
    Körber M; Bodmeier R
    Eur J Pharm Sci; 2008 Nov; 35(4):283-92. PubMed ID: 18721875
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Are in situ formulations the keys for the therapeutic future of S-nitrosothiols?
    Parent M; Boudier A; Dupuis F; Nouvel C; Sapin A; Lartaud I; Six JL; Leroy P; Maincent P
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt A):640-9. PubMed ID: 23954508
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Solvent exchange-induced in situ forming gel comprising ethyl cellulose-antimicrobial drugs.
    Phaechamud T; Mahadlek J
    Int J Pharm; 2015 Oct; 494(1):381-92. PubMed ID: 26302862
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Drug release from injectable depots: two different in vitro mechanisms.
    Wang L; Venkatraman S; Kleiner L
    J Control Release; 2004 Sep; 99(2):207-16. PubMed ID: 15380631
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.