These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 18611845)

  • 1. Does a 'turbophoretic' effect account for layer concentrations of insects migrating in the stable night-time atmosphere?
    Reynolds AM; Reynolds DR; Riley JR
    J R Soc Interface; 2009 Jan; 6(30):87-95. PubMed ID: 18611845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Orientation cues for high-flying nocturnal insect migrants: do turbulence-induced temperature and velocity fluctuations indicate the mean wind flow?
    Reynolds AM; Reynolds DR; Smith AD; Chapman JW
    PLoS One; 2010 Dec; 5(12):e15758. PubMed ID: 21209956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A single wind-mediated mechanism explains high-altitude 'non-goal oriented' headings and layering of nocturnally migrating insects.
    Reynolds AM; Reynolds DR; Smith AD; Chapman JW
    Proc Biol Sci; 2010 Mar; 277(1682):765-72. PubMed ID: 19889697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radar studies of the vertical distribution of insects migrating over southern Britain: the influence of temperature inversions on nocturnal layer concentrations.
    Reynolds DR; Chapman JW; Edwards AS; Smith AD; Wood CR; Barlow JF; Woiwod IP
    Bull Entomol Res; 2005 Jun; 95(3):259-74. PubMed ID: 15960880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of the atmospheric boundary layer on nocturnal layers of noctuids and other moths migrating over southern Britain.
    Wood CR; Chapman JW; Reynolds DR; Barlow JF; Smith AD; Woiwod IP
    Int J Biometeorol; 2006 Mar; 50(4):193-204. PubMed ID: 16432728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linking Small-Scale Flight Manoeuvers and Density Profiles to the Vertical Movement of Insects in the Nocturnal Stable Boundary Layer.
    Wainwright CE; Reynolds DR; Reynolds AM
    Sci Rep; 2020 Jan; 10(1):1019. PubMed ID: 31974508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orientation in high-flying migrant insects in relation to flows: mechanisms and strategies.
    Reynolds AM; Reynolds DR; Sane SP; Hu G; Chapman JW
    Philos Trans R Soc Lond B Biol Sci; 2016 Sep; 371(1704):. PubMed ID: 27528782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting insect migration density and speed in the daytime convective boundary layer.
    Bell JR; Aralimarad P; Lim KS; Chapman JW
    PLoS One; 2013; 8(1):e54202. PubMed ID: 23359799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incorporating terminal velocities into Lagrangian stochastic models of particle dispersal in the atmospheric boundary layer.
    Reynolds AM
    Sci Rep; 2018 Nov; 8(1):16843. PubMed ID: 30442966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive strategies of high-flying migratory hoverflies in response to wind currents.
    Gao B; Wotton KR; Hawkes WLS; Menz MHM; Reynolds DR; Zhai BP; Hu G; Chapman JW
    Proc Biol Sci; 2020 Jun; 287(1928):20200406. PubMed ID: 32486972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of nocturnal celestial illumination on high-flying migrant insects.
    Gao B; Hu G; Chapman JW
    Philos Trans R Soc Lond B Biol Sci; 2024 Jun; 379(1904):20230115. PubMed ID: 38705175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The movement of small insects in the convective boundary layer: linking patterns to processes.
    Wainwright CE; Stepanian PM; Reynolds DR; Reynolds AM
    Sci Rep; 2017 Jul; 7(1):5438. PubMed ID: 28710446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A radar study of emigratory flight and layer formation by insects at dawn over southern Britain.
    Reynolds DR; Smith AD; Chapman JW
    Bull Entomol Res; 2008 Feb; 98(1):35-52. PubMed ID: 18076783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aphid aerial density profiles are consistent with turbulent advection amplifying flight behaviours: abandoning the epithet 'passive'.
    Reynolds AM; Reynolds DR
    Proc Biol Sci; 2009 Jan; 276(1654):137-43. PubMed ID: 18782743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wind selection and drift compensation optimize migratory pathways in a high-flying moth.
    Chapman JW; Reynolds DR; Mouritsen H; Hill JK; Riley JR; Sivell D; Smith AD; Woiwod IP
    Curr Biol; 2008 Apr; 18(7):514-8. PubMed ID: 18394893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wind-Related Orientation Patterns in Diurnal, Crepuscular and Nocturnal High-Altitude Insect Migrants.
    Hu G; Lim KS; Reynolds DR; Reynolds AM; Chapman JW
    Front Behav Neurosci; 2016; 10():32. PubMed ID: 26973481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Heavy Pollution Episode in Tianjin Based on UAV Meteorological Sounding and Numerical Model].
    Yang X; Cai ZY; Han SQ; Shi J; Tang YX; Jiang M; Qiu XB
    Huan Jing Ke Xue; 2021 Jan; 42(1):9-18. PubMed ID: 33372452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flight orientation behaviors promote optimal migration trajectories in high-flying insects.
    Chapman JW; Nesbit RL; Burgin LE; Reynolds DR; Smith AD; Middleton DR; Hill JK
    Science; 2010 Feb; 327(5966):682-5. PubMed ID: 20133570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive strategies in nocturnally migrating insects and songbirds: contrasting responses to wind.
    Chapman JW; Nilsson C; Lim KS; Bäckman J; Reynolds DR; Alerstam T
    J Anim Ecol; 2016 Jan; 85(1):115-24. PubMed ID: 26147535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined effect of boundary layer recirculation factor and stable energy on local air quality in the Pearl River Delta over southern China.
    Li H; Wang B; Fang X; Zhu W; Fan Q; Liao Z; Liu J; Zhang A; Fan S
    J Air Waste Manag Assoc; 2018 Jul; 68(7):685-699. PubMed ID: 29494312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.