These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 18612631)

  • 1. Coordination strategies for limb forces during weight-bearing locomotion in normal rats, and in rats spinalized as neonates.
    Giszter SF; Davies MR; Graziani V
    Exp Brain Res; 2008 Sep; 190(1):53-69. PubMed ID: 18612631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Kinetic changes of canine's hindlimbs after fixation of one forelimb].
    Li H; Zhang C; Bai Y; Zhou J; Zeng B
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Jan; 22(1):66-9. PubMed ID: 18361242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How spinalized rats can walk: biomechanics, cortex, and hindlimb muscle scaling--implications for rehabilitation.
    Giszter SF; Hockensmith G; Ramakrishnan A; Udoekwere UI
    Ann N Y Acad Sci; 2010 Jun; 1198():279-93. PubMed ID: 20536943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motor strategies used by rats spinalized at birth to maintain stance in response to imposed perturbations.
    Giszter SF; Davies MR; Graziani V
    J Neurophysiol; 2007 Apr; 97(4):2663-75. PubMed ID: 17287444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compensatory locomotor adjustments of rats with cervical or thoracic spinal cord hemisections.
    Webb AA; Muir GD
    J Neurotrauma; 2002 Feb; 19(2):239-56. PubMed ID: 11893025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trunk sensorimotor cortex is essential for autonomous weight-supported locomotion in adult rats spinalized as P1/P2 neonates.
    Giszter S; Davies MR; Ramakrishnan A; Udoekwere UI; Kargo WJ
    J Neurophysiol; 2008 Aug; 100(2):839-51. PubMed ID: 18509082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of equine locomotion during different degrees of experimentally induced lameness. II: Distribution of ground reaction force patterns of the concurrently loaded limbs.
    Merkens HW; Schamhardt HC
    Equine Vet J Suppl; 1988 Sep; (6):107-12. PubMed ID: 9079071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of subject velocity on ground reaction force measurements and stance times in clinically normal horses at the walk and trot.
    McLaughlin RM; Gaughan EM; Roush JK; Skaggs CL
    Am J Vet Res; 1996 Jan; 57(1):7-11. PubMed ID: 8720231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hip extensor EMG and forelimb/hind limb weight support asymmetry in primate quadrupeds.
    Larson SG; Stern JT
    Am J Phys Anthropol; 2009 Mar; 138(3):343-55. PubMed ID: 18924163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Locomotor deficits and adaptive mechanisms after thoracic spinal cord contusion in the adult rat.
    Collazos-Castro JE; López-Dolado E; Nieto-Sampedro M
    J Neurotrauma; 2006 Jan; 23(1):1-17. PubMed ID: 16430369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Propulsive forces of mudskipper fins and salamander limbs during terrestrial locomotion: implications for the invasion of land.
    Kawano SM; Blob RW
    Integr Comp Biol; 2013 Aug; 53(2):283-94. PubMed ID: 23667046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compensatory load redistribution of horses with induced weightbearing hindlimb lameness trotting on a treadmill.
    Weishaupt MA; Wiestner T; Hogg HP; Jordan P; Auer JA
    Equine Vet J; 2004 Dec; 36(8):727-33. PubMed ID: 15656505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fore-aft ground force adaptations to induced forelimb lameness in walking and trotting dogs.
    Abdelhadi J; Wefstaedt P; Nolte I; Schilling N
    PLoS One; 2012; 7(12):e52202. PubMed ID: 23300614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Limb movement adaptations in horses with experimentally induced fore- or hindlimb lameness.
    Buchner HH; Savelberg HH; Schamhardt HC; Barneveld A
    Equine Vet J; 1996 Jan; 28(1):63-70. PubMed ID: 8565956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HORSE SPECIES SYMPOSIUM: Biomechanics of the exercising horse.
    Clayton HM
    J Anim Sci; 2016 Oct; 94(10):4076-4086. PubMed ID: 27898852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compensatory load redistribution in walking and trotting dogs with hind limb lameness.
    Fischer S; Anders A; Nolte I; Schilling N
    Vet J; 2013 Sep; 197(3):746-52. PubMed ID: 23683534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ontogeny of limb force distribution in squirrel monkeys (Saimiri boliviensis): insights into the mechanical bases of primate hind limb dominance.
    Young JW
    J Hum Evol; 2012 Apr; 62(4):473-85. PubMed ID: 22386579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of induced forelimb lameness on thoracolumbar kinematics during treadmill locomotion.
    Gómez Alvarez CB; Wennerstrand J; Bobbert MF; Lamers L; Johnston C; Back W; van Weeren PR
    Equine Vet J; 2007 May; 39(3):197-201. PubMed ID: 17520968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ground reaction forces of elite dressage horses in collected trot and passage.
    Clayton HM; Schamhardt HC; Hobbs SJ
    Vet J; 2017 Mar; 221():30-33. PubMed ID: 28283077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Load redistribution in walking and trotting Beagles with induced forelimb lameness.
    Abdelhadi J; Wefstaedt P; Galindo-Zamora V; Anders A; Nolte I; Schilling N
    Am J Vet Res; 2013 Jan; 74(1):34-9. PubMed ID: 23270343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.