These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 18612828)

  • 1. Outflow boundary conditions for arterial networks with multiple outlets.
    Grinberg L; Karniadakis GE
    Ann Biomed Eng; 2008 Sep; 36(9):1496-514. PubMed ID: 18612828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological outflow boundary conditions methodology for small arteries with multiple outlets: a patient-specific hepatic artery haemodynamics case study.
    Aramburu J; Antón R; Bernal N; Rivas A; Ramos JC; Sangro B; Bilbao JI
    Proc Inst Mech Eng H; 2015 Apr; 229(4):291-306. PubMed ID: 25934258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A one-dimensional fluid dynamic model of the systemic arteries.
    Olufsen MS
    Stud Health Technol Inform; 2000; 71():79-97. PubMed ID: 10977605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Outflow boundary conditions for blood flow in arterial trees.
    Du T; Hu D; Cai D
    PLoS One; 2015; 10(5):e0128597. PubMed ID: 26000782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Outflow boundary conditions for 3D simulations of non-periodic blood flow and pressure fields in deformable arteries.
    Vignon-Clementel IE; Figueroa CA; Jansen KE; Taylor CA
    Comput Methods Biomech Biomed Engin; 2010 Oct; 13(5):625-40. PubMed ID: 20140798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphometry-based impedance boundary conditions for patient-specific modeling of blood flow in pulmonary arteries.
    Spilker RL; Feinstein JA; Parker DW; Reddy VM; Taylor CA
    Ann Biomed Eng; 2007 Apr; 35(4):546-59. PubMed ID: 17294117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of inlet and outlet boundary conditions in image-based CFD modeling of aortic flow.
    Madhavan S; Kemmerling EMC
    Biomed Eng Online; 2018 May; 17(1):66. PubMed ID: 29843730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fractal network model for simulating abdominal and lower extremity blood flow during resting and exercise conditions.
    Steele BN; Olufsen MS; Taylor CA
    Comput Methods Biomech Biomed Engin; 2007 Feb; 10(1):39-51. PubMed ID: 18651270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical modeling of 1D arterial networks coupled with a lumped parameters description of the heart.
    Formaggia L; Lamponi D; Tuveri M; Veneziani A
    Comput Methods Biomech Biomed Engin; 2006 Oct; 9(5):273-88. PubMed ID: 17132614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An effective fractal-tree closure model for simulating blood flow in large arterial networks.
    Perdikaris P; Grinberg L; Karniadakis GE
    Ann Biomed Eng; 2015 Jun; 43(6):1432-42. PubMed ID: 25510364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical simulation of local blood flow in the carotid and cerebral arteries under altered gravity.
    Kim CS; Kiris C; Kwak D; David T
    J Biomech Eng; 2006 Apr; 128(2):194-202. PubMed ID: 16524330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The arterial system pressure-volume loop.
    Quick CM; Mohiuddin MW; Laine GA; Noordergraaf A
    Physiol Meas; 2005 Dec; 26(6):N29-35. PubMed ID: 16311438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parametric analysis of an efficient boundary condition to control outlet flow rates in large arterial networks.
    Lo SCY; McCullough JWS; Coveney PV
    Sci Rep; 2022 Nov; 12(1):19092. PubMed ID: 36351976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental validation of a time-domain-based wave propagation model of blood flow in viscoelastic vessels.
    Bessems D; Giannopapa CG; Rutten MC; van de Vosse FN
    J Biomech; 2008; 41(2):284-91. PubMed ID: 18031750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the choice of outlet boundary conditions for patient-specific analysis of aortic flow using computational fluid dynamics.
    Pirola S; Cheng Z; Jarral OA; O'Regan DP; Pepper JR; Athanasiou T; Xu XY
    J Biomech; 2017 Jul; 60():15-21. PubMed ID: 28673664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Boundary conditions in simulation of stenosed coronary arteries.
    Mohammadi H; Bahramian F
    Cardiovasc Eng; 2009 Sep; 9(3):83-91. PubMed ID: 19688262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inflow/Outflow Boundary Conditions for Particle-Based Blood Flow Simulations: Application to Arterial Bifurcations and Trees.
    Lykov K; Li X; Lei H; Pivkin IV; Karniadakis GE
    PLoS Comput Biol; 2015 Aug; 11(8):e1004410. PubMed ID: 26317829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On coupling a lumped parameter heart model and a three-dimensional finite element aorta model.
    Kim HJ; Vignon-Clementel IE; Figueroa CA; LaDisa JF; Jansen KE; Feinstein JA; Taylor CA
    Ann Biomed Eng; 2009 Nov; 37(11):2153-69. PubMed ID: 19609676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of the human intracranial arterial tree.
    Grinberg L; Anor T; Cheever E; Madsen JR; Karniadakis GE
    Philos Trans A Math Phys Eng Sci; 2009 Jun; 367(1896):2371-86. PubMed ID: 19414460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patient-specific modeling of blood flow and pressure in human coronary arteries.
    Kim HJ; Vignon-Clementel IE; Coogan JS; Figueroa CA; Jansen KE; Taylor CA
    Ann Biomed Eng; 2010 Oct; 38(10):3195-209. PubMed ID: 20559732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.