BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 18613024)

  • 1. A model system for a fluorometric biosensor using permeabilized Zymomonas mobilis or enzymes with protein confined dinucleotides.
    Thordsen O; Lee SJ; Degelau A; Scheper T; Loos H; Rehr B; Sahm H
    Biotechnol Bioeng; 1993 Jul; 42(3):387-93. PubMed ID: 18613024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new biosensor for specific determination of glucose or fructose using an oxidoreductase of Zymomonas mobilis.
    Park JK; Kim HS
    Biotechnol Bioeng; 1990 Oct; 36(7):744-9. PubMed ID: 18597267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new biosensor for specific determination of sucrose using an oxidoreductase of Zymomonas mobilis and invertase.
    Park JK; Ro HS; Kim HS
    Biotechnol Bioeng; 1991 Jul; 38(3):217-23. PubMed ID: 18600754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous production of gluconic acid and sorbitol from Jerusalem artichoke and glucose using an oxidoreductase of Zymomonas mobilis and inulinase.
    Kim DM; Kim HS
    Biotechnol Bioeng; 1992 Feb; 39(3):336-42. PubMed ID: 18600950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous enzymatic synthesis of gluconic acid and sorbitol. Continuous process development using glucose-fructose oxidoreductase from Zymomonas mobilis.
    Silva-Martinez M; Haltrich D; Novalic S; Kulbe KD; Nidetzky B
    Appl Biochem Biotechnol; 1998; 70-72():863-8. PubMed ID: 18576049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved operational stability of cell-free glucose-fructose oxidoreductase from Zymomonas mobilis for the efficient synthesis of sorbitol and gluconic acid in a continuous ultrafiltration membrane reactor.
    Nidetzky B; Fürlinger M; Gollhofer D; Scopes RK; Haltrich D; Kulbe KD
    Biotechnol Bioeng; 1997 Mar; 53(6):623-9. PubMed ID: 18634063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of lactobionic acid and sorbitol from lactose/fructose substrate using GFOR/GL enzymes from Zymomonas mobilis cells: a kinetic study.
    Pedruzzi I; da Silva EA; Rodrigues AE
    Enzyme Microb Technol; 2011 Jul; 49(2):183-91. PubMed ID: 22112407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zymomonas mobilis as catalyst for the biotechnological production of sorbitol and gluconic acid.
    Erzinger GS; Vitolo M
    Appl Biochem Biotechnol; 2006; 129-132():787-94. PubMed ID: 16915688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The efficient export of NADP-containing glucose-fructose oxidoreductase to the periplasm of Zymomonas mobilis depends both on an intact twin-arginine motif in the signal peptide and on the generation of a structural export signal induced by cofactor binding.
    Halbig D; Wiegert T; Blaudeck N; Freudl R; Sprenger GA
    Eur J Biochem; 1999 Jul; 263(2):543-51. PubMed ID: 10406965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zymomonas mobilis as catalyst for the biotechnological production of sorbitol and gluconic acid.
    Erzinger GS; Vitolo M
    Appl Biochem Biotechnol; 2006 Mar; 131(1-3):787-94. PubMed ID: 18563654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucose-fructose oxidoreductase, a new enzyme isolated from Zymomonas mobilis that is responsible for sorbitol production.
    Zachariou M; Scopes RK
    J Bacteriol; 1986 Sep; 167(3):863-9. PubMed ID: 3745122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of experimental errors in bioprocesses. 1. Production of lactobionic acid and sorbitol using the GFOR (glucose-fructose oxidoreductase) enzyme from permeabilized cells of Zymomonas mobilis.
    Severo JB; Pinto JC; Ferraz HC; Alves TL
    J Ind Microbiol Biotechnol; 2011 Sep; 38(9):1575-85. PubMed ID: 21328074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multistep process is responsible for product-induced inactivation of glucose-fructose oxidoreductase from Zymomonas mobilis.
    Fürlinger M; Haltrich D; Kulbe KD; Nidetzky B
    Eur J Biochem; 1998 Feb; 251(3):955-63. PubMed ID: 9490072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On-line monitoring of glucose in mammalian cell culture using a flow injection analysis (FIA) mediated biosensor.
    Male KB; Gartu PO; Kamen AA; Luong JH
    Biotechnol Bioeng; 1997 Aug; 55(3):497-504. PubMed ID: 18636515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sorbitol promotes growth of Zymomonas mobilis in environments with high concentrations of sugar: evidence for a physiological function of glucose-fructose oxidoreductase in osmoprotection.
    Loos H; Krämer R; Sahm H; Sprenger GA
    J Bacteriol; 1994 Dec; 176(24):7688-93. PubMed ID: 8002594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The kinetics of glucose-fructose oxidoreductase from Zymomonas mobilis.
    Hardman MJ; Scopes RK
    Eur J Biochem; 1988 Apr; 173(1):203-9. PubMed ID: 3356190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The biotechnological production of sorbitol.
    Silveira MM; Jonas R
    Appl Microbiol Biotechnol; 2002 Aug; 59(4-5):400-8. PubMed ID: 12172602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of NADP(H)-dependent 1,5-anhydro-D-fructose reductase from Sinorhizobium morelense at 2.2 A resolution: construction of a NADH-accepting mutant and its application in rare sugar synthesis.
    Dambe TR; Kühn AM; Brossette T; Giffhorn F; Scheidig AJ
    Biochemistry; 2006 Aug; 45(33):10030-42. PubMed ID: 16906761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous enzymatic synthesis of gluconic acid and sorbitol: production, purification, and application of glucose-fructose oxidoreductase and gluconolactonase.
    Nidetzky B; Fürlinger M; Gollhofer D; Haug I; Haltrich D; Kulbe KD
    Appl Biochem Biotechnol; 1997; 63-65():173-88. PubMed ID: 18576080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical spectroscopy of nicotinoprotein alcohol dehydrogenase from Amycolatopsis methanolica: a comparison with horse liver alcohol dehydrogenase and UDP-galactose epimerase.
    Piersma SR; Visser AJ; de Vries S; Duine JA
    Biochemistry; 1998 Mar; 37(9):3068-77. PubMed ID: 9485460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.