These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 18613056)

  • 1. A thermodynamically based correlation for maintenance gibbs energy requirements in aerobic and anaerobic chemotrophic growth.
    Tijhuis L; Van Loosdrecht MC; Heijnen JJ
    Biotechnol Bioeng; 1993 Aug; 42(4):509-19. PubMed ID: 18613056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In search of a thermodynamic description of biomass yields for the chemotrophic growth of microorganisms.
    Heijnen JJ; Van Dijken JP
    Biotechnol Bioeng; 1992 Apr; 39(8):833-58. PubMed ID: 18601018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A black box mathematical model to calculate auto- and heterotrophic biomass yields based on Gibbs energy dissipation.
    Hoijnen JJ; van Loosdrecht MC; Tijhuis L
    Biotechnol Bioeng; 1992 Dec; 40(10):1139-54. PubMed ID: 18601065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maintenance and growth requirements in the metabolism of Debaryomyces hansenii performing xylose-to-xylitol bioconversion in corncob hemicellulose hydrolyzate.
    Rivas B; Torre P; Domínguez JM; Converti A
    Biotechnol Bioeng; 2009 Mar; 102(4):1062-73. PubMed ID: 18988265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamic and kinetic characterization using process dynamics: acidophilic ferrous iron oxidation by Leptospirillum ferrooxidans.
    Kleerebezem R; van Loosdrecht MC
    Biotechnol Bioeng; 2008 May; 100(1):49-60. PubMed ID: 18080344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fascinating transformations of donor-acceptor complexes of group 13 metal (Al, Ga, In) derivatives with nitriles and isonitriles: from monomeric cyanides to rings and cages.
    Timoshkin AY; Schaefer HF
    J Am Chem Soc; 2003 Aug; 125(33):9998-10011. PubMed ID: 12914463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of pH, temperature, and urea molar flowrate on Arthrospira platensis fed-batch cultivation: a kinetic and thermodynamic approach.
    Sánchez-Luna LD; Bezerra RP; Matsudo MC; Sato S; Converti A; de Carvalho JC
    Biotechnol Bioeng; 2007 Mar; 96(4):702-11. PubMed ID: 16988991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature effects on glycogen accumulating organisms.
    Lopez-Vazquez CM; Hooijmans CM; Brdjanovic D; Gijzen HJ; van Loosdrecht MC
    Water Res; 2009 Jun; 43(11):2852-64. PubMed ID: 19380157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A kinetic model for substrate and energy consumption of microbial growth under substrate-sufficient conditions.
    Zeng AP; Deckwer WD
    Biotechnol Prog; 1995; 11(1):71-9. PubMed ID: 7765990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamic electron equivalents model for bacterial yield prediction: modifications and comparative evaluations.
    McCarty PL
    Biotechnol Bioeng; 2007 Jun; 97(2):377-88. PubMed ID: 17089390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The energetics of HMG box interactions with DNA: thermodynamics of the DNA binding of the HMG box from mouse sox-5.
    Privalov PL; Jelesarov I; Read CM; Dragan AI; Crane-Robinson C
    J Mol Biol; 1999 Dec; 294(4):997-1013. PubMed ID: 10588902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamics of microbial growth and metabolism: an analysis of the current situation.
    von Stockar U; Maskow T; Liu J; Marison IW; Patiño R
    J Biotechnol; 2006 Feb; 121(4):517-33. PubMed ID: 16185782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deferribacter autotrophicus sp. nov., an iron(III)-reducing bacterium from a deep-sea hydrothermal vent.
    Slobodkina GB; Kolganova TV; Chernyh NA; Querellou J; Bonch-Osmolovskaya EA; Slobodkin AI
    Int J Syst Evol Microbiol; 2009 Jun; 59(Pt 6):1508-12. PubMed ID: 19502344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiology of the yeast Kluyveromyces marxianus during batch and chemostat cultures with glucose as the sole carbon source.
    Fonseca GG; Gombert AK; Heinzle E; Wittmann C
    FEMS Yeast Res; 2007 May; 7(3):422-35. PubMed ID: 17233766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased biomass yield of Lactococcus lactis during energetically limited growth and respiratory conditions.
    Koebmann B; Blank LM; Solem C; Petranovic D; Nielsen LK; Jensen PR
    Biotechnol Appl Biochem; 2008 May; 50(Pt 1):25-33. PubMed ID: 17824842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An elevation of the molar growth yield of Zymomonas mobilis during aerobic exponential growth.
    Zikmanis P; Krúce R; Auziņa L
    Arch Microbiol; 1997; 167(2-3):167-71. PubMed ID: 9133324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new thermodynamically based correlation of chemotrophic biomass yields.
    Heijnen JJ
    Antonie Van Leeuwenhoek; 1991; 60(3-4):235-56. PubMed ID: 1807196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microthrix parvicella, a specialized lipid consumer in anaerobic-aerobic activated sludge plants.
    Nielsen PH; Roslev P; Dueholm TE; Nielsen JL
    Water Sci Technol; 2002; 46(1-2):73-80. PubMed ID: 12216691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic and thermodynamic aspects of Cu(II) and Cr(III) removal from aqueous solutions using rose waste biomass.
    Iftikhar AR; Bhatti HN; Hanif MA; Nadeem R
    J Hazard Mater; 2009 Jan; 161(2-3):941-7. PubMed ID: 18508197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.