These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 18613104)

  • 1. Prevascularization of porous biodegradable polymers.
    Mikos AG; Sarakinos G; Lyman MD; Ingber DE; Vacanti JP; Langer R
    Biotechnol Bioeng; 1993 Sep; 42(6):716-23. PubMed ID: 18613104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pore morphology effects on the fibrovascular tissue growth in porous polymer substrates.
    Wake MC; Patrick CW; Mikos AG
    Cell Transplant; 1994; 3(4):339-43. PubMed ID: 7522866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradable sponges for hepatocyte transplantation.
    Mooney DJ; Park S; Kaufmann PM; Sano K; McNamara K; Vacanti JP; Langer R
    J Biomed Mater Res; 1995 Aug; 29(8):959-65. PubMed ID: 7593039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel synthetic selectively degradable vascular prostheses: a preliminary implantation study.
    Izhar U; Schwalb H; Borman JB; Hellener GR; Hotoveli-Salomon A; Marom G; Stern T; Cohn D
    J Surg Res; 2001 Feb; 95(2):152-60. PubMed ID: 11162039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of spheroidal aggregates of hepatocytes on biodegradable polymers under continuous-flow bioreactor conditions.
    Pollok JM; Kluth D; Cusick RA; Lee H; Utsunomiya H; Ma PX; Langer R; Broelsch CE; Vacanti JP
    Eur J Pediatr Surg; 1998 Aug; 8(4):195-9. PubMed ID: 9783140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osteoblast function on synthetic biodegradable polymers.
    Ishaug SL; Yaszemski MJ; Bizios R; Mikos AG
    J Biomed Mater Res; 1994 Dec; 28(12):1445-53. PubMed ID: 7876284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of porosity and pore size on in vitro degradation of three-dimensional porous poly(D,L-lactide-co-glycolide) scaffolds for tissue engineering.
    Wu L; Ding J
    J Biomed Mater Res A; 2005 Dec; 75(4):767-77. PubMed ID: 16121386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of fibrovascular tissue ingrowth in hydrogel foams.
    Wake MC; Mikos AG; Sarakinos G; Vacanti JP; Langer R
    Cell Transplant; 1995; 4(3):275-9. PubMed ID: 7543793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microcellular polyHIPE polymer supports osteoblast growth and bone formation in vitro.
    Akay G; Birch MA; Bokhari MA
    Biomaterials; 2004 Aug; 25(18):3991-4000. PubMed ID: 15046889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells.
    Shin'oka T; Matsumura G; Hibino N; Naito Y; Watanabe M; Konuma T; Sakamoto T; Nagatsu M; Kurosawa H
    J Thorac Cardiovasc Surg; 2005 Jun; 129(6):1330-8. PubMed ID: 15942574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porosity of 3D biomaterial scaffolds and osteogenesis.
    Karageorgiou V; Kaplan D
    Biomaterials; 2005 Sep; 26(27):5474-91. PubMed ID: 15860204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tissue ingrowth and degradation of two biodegradable porous polymers with different porosities and pore sizes.
    van Tienen TG; Heijkants RG; Buma P; de Groot JH; Pennings AJ; Veth RP
    Biomaterials; 2002 Apr; 23(8):1731-8. PubMed ID: 11950043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Injectable poly(lactic-co-glycolic) acid scaffolds with in situ pore formation for tissue engineering.
    Krebs MD; Sutter KA; Lin AS; Guldberg RE; Alsberg E
    Acta Biomater; 2009 Oct; 5(8):2847-59. PubMed ID: 19446056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo degradation of porous poly(propylene fumarate)/poly(DL-lactic-co-glycolic acid) composite scaffolds.
    Hedberg EL; Kroese-Deutman HC; Shih CK; Crowther RS; Carney DH; Mikos AG; Jansen JA
    Biomaterials; 2005 Aug; 26(22):4616-23. PubMed ID: 15722131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell seeding in porous transplantation devices.
    Wald HL; Sarakinos G; Lyman MD; Mikos AG; Vacanti JP; Langer R
    Biomaterials; 1993; 14(4):270-8. PubMed ID: 8476996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term engraftment of hepatocytes transplanted on biodegradable polymer sponges.
    Mooney DJ; Sano K; Kaufmann PM; Majahod K; Schloo B; Vacanti JP; Langer R
    J Biomed Mater Res; 1997 Dec; 37(3):413-20. PubMed ID: 9368146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hepatocyte transplantation in Swine using prevascularized polyvinyl alcohol sponges.
    Takeda T; Murphy S; Uyama S; Organ GM; Schloo BL; Vacanti JP
    Tissue Eng; 1995; 1(3):253-62. PubMed ID: 19877904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabricating tubular devices from polymers of lactic and glycolic Acid for tissue engineering.
    Mooney DJ; Breuer C; McNamara K; Vacanti JP; Langer R
    Tissue Eng; 1995; 1(2):107-18. PubMed ID: 19877920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and fabrication of biodegradable polymer devices to engineer tubular tissues.
    Mooney DJ; Organ G; Vacanti JP; Langer R
    Cell Transplant; 1994; 3(2):203-10. PubMed ID: 7516806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tissue engineering by cell transplantation using degradable polymer substrates.
    Cima LG; Vacanti JP; Vacanti C; Ingber D; Mooney D; Langer R
    J Biomech Eng; 1991 May; 113(2):143-51. PubMed ID: 1652042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.