BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 18613129)

  • 1. Lipase immobilized on hydrophobic porous polymer supports prepared by concentrated emulsion polymerization and their activity in the hydrolysis of triacylglycerides.
    Ruckenstein E; Wang X
    Biotechnol Bioeng; 1993 Sep; 42(7):821-8. PubMed ID: 18613129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Covalent attachment of microbial lipase onto microporous styrene-divinylbenzene copolymer by means of polyglutaraldehyde.
    Dizge N; Keskinler B; Tanriseven A
    Colloids Surf B Biointerfaces; 2008 Oct; 66(1):34-8. PubMed ID: 18571389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of lignin peroxidase by Phanerochaete chrysosporium immobilized on porous poly(styrene-divinylbenzene) carrier and its application to the degrading of 2-chlorophenol.
    Ruckenstein E; Wang XB
    Biotechnol Bioeng; 1994 Jun; 44(1):79-86. PubMed ID: 18618449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of porous polyurethane particles and their use in enzyme immobilization.
    Wang X; Ruckenstein E
    Biotechnol Prog; 1993; 9(6):661-5. PubMed ID: 7764355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrophobic Core/Hydrophilic Shell Amphiphilic Particles.
    Yun Y; Li H; Ruckenstein E
    J Colloid Interface Sci; 2001 Jun; 238(2):414-419. PubMed ID: 11374937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly(styrene-divinylbenzene) beads surface functionalized with di-block polymer grafting and multi-modal ligand attachment: performance of reversibly immobilized lipase in ester synthesis.
    Bayramoglu G; Karagoz B; Altintas B; Arica MY; Bicak N
    Bioprocess Biosyst Eng; 2011 Aug; 34(6):735-46. PubMed ID: 21336640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immobilization of hydrophobic lipase derivatives on to organic polymer beads.
    Basri M; Ampon K; Yunus WM; Razak CN; Salleh AB
    J Chem Technol Biotechnol; 1994 Jan; 59(1):37-44. PubMed ID: 7764496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic activity of lipase immobilized onto ultrathin films of cellulose esters.
    Kosaka PM; Kawano Y; El Seoud OA; Petri DF
    Langmuir; 2007 Nov; 23(24):12167-73. PubMed ID: 17949116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immobilization of lipase onto micron-size magnetic beads.
    Liu X; Guan Y; Shen R; Liu H
    J Chromatogr B Analyt Technol Biomed Life Sci; 2005 Aug; 822(1-2):91-7. PubMed ID: 15998604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of porous epoxy monolith via concentrated emulsion polymerization.
    Wang J; Zhang C; Du Z; Xiang A; Li H
    J Colloid Interface Sci; 2008 Sep; 325(2):453-8. PubMed ID: 18571192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simple and efficient immobilization of lipase B from Candida antarctica on porous styrene-divinylbenzene beads.
    Hernandez K; Garcia-Galan C; Fernandez-Lafuente R
    Enzyme Microb Technol; 2011 Jun; 49(1):72-8. PubMed ID: 22112274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption and activity of lipase from Candida rugosa on the chitosan-modified poly(acrylonitrile-co-maleic acid) membrane surface.
    Ye P; Jiang J; Xu ZK
    Colloids Surf B Biointerfaces; 2007 Oct; 60(1):62-7. PubMed ID: 17616362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immobilization of lipase by ultrafiltration and cross-linking onto the polysulfone membrane surface.
    Yujun W; Jian X; Guangsheng L; Youyuan D
    Bioresour Technol; 2008 May; 99(7):2299-303. PubMed ID: 17591438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Covalent immobilization of lipase from Candida rugosa onto poly(acrylonitrile-co-2-hydroxyethyl methacrylate) electrospun fibrous membranes for potential bioreactor application.
    Huang XJ; Yu AG; Xu ZK
    Bioresour Technol; 2008 Sep; 99(13):5459-65. PubMed ID: 18248984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Separation and immobilization of lipase from Penicillium simplicissimum by selective adsorption on hydrophobic supports.
    Cunha AG; Fernández-Lorente G; Gutarra ML; Bevilaqua JV; Almeida RV; Paiva LM; Fernández-Lafuente R; Guisán JM; Freire DM
    Appl Biochem Biotechnol; 2009 May; 156(1-3):133-45. PubMed ID: 19037600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solid-phase chemical amination of a lipase from Bacillus thermocatenulatus to improve its stabilization via covalent immobilization on highly activated glyoxyl-agarose.
    Fernandez-Lorente G; Godoy CA; Mendes AA; Lopez-Gallego F; Grazu V; de Las Rivas B; Palomo JM; Hermoso J; Fernandez-Lafuente R; Guisan JM
    Biomacromolecules; 2008 Sep; 9(9):2553-61. PubMed ID: 18702542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of pore diameter and cross-linking method on the immobilization efficiency of Candida rugosa lipase in SBA-15.
    Gao S; Wang Y; Diao X; Luo G; Dai Y
    Bioresour Technol; 2010 Jun; 101(11):3830-7. PubMed ID: 20116998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immobilization of Candida rugosa lipase on sporopollenin from Lycopodium clavatum.
    Tutar H; Yilmaz E; Pehlivan E; Yilmaz M
    Int J Biol Macromol; 2009 Oct; 45(3):315-20. PubMed ID: 19583977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption and activity of Candida rugosa lipase on polypropylene hollow fiber membrane modified with phospholipid analogous polymers.
    Deng HT; Xu ZK; Huang XJ; Wu J; Seta P
    Langmuir; 2004 Nov; 20(23):10168-73. PubMed ID: 15518509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil.
    Noureddini H; Gao X; Philkana RS
    Bioresour Technol; 2005 May; 96(7):769-77. PubMed ID: 15607189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.