BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 18613141)

  • 21. Compartmentalization of reactants in different regions of sodium 1,4-bis(2-ethylhexyl)sulfosuccinate/heptane/water reverse micelles and its influence on bimolecular electron-transfer kinetics.
    Choudhury SD; Kumbhakar M; Nath S; Sarkar SK; Mukherjee T; Pal H
    J Phys Chem B; 2007 Aug; 111(30):8842-53. PubMed ID: 17608520
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of hydrolysis and esterification behavior of Humicola lanuginosa and Rhizomucor miehei lipases in AOT-stabilized water-in-oil microemulsions: II. Effect of temperature on reaction kinetics and general considerations of stability and productivity.
    Crooks GE; Rees GD; Robinson BH; Svensson M; Stephenson GR
    Biotechnol Bioeng; 1995 Nov; 48(3):190-6. PubMed ID: 18623477
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Change in the acid hydrolysis mechanism of esters enforced by strongly acid microemulsions.
    Fernández E; García-Río L; Rodríguez-Dafonte P
    J Phys Chem B; 2007 Oct; 111(39):11437-42. PubMed ID: 17850067
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reverse micellar aggregates: effect on ketone reduction. 2. Surfactant role.
    Correa NM; Zorzan DH; D'Anteo L; Lasta E; Chiarini M; Cerichelli G
    J Org Chem; 2004 Nov; 69(24):8231-8. PubMed ID: 15549792
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Study of the alkaline fading of phenolphthalein in microemulsions.
    Mao S; Chen Z; An X; Shen W
    J Phys Chem A; 2011 Jun; 115(22):5560-7. PubMed ID: 21574587
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enzyme-Catalyzed oxidation of cholesterol in physically characterized water-in-oil microemulsions.
    Hedström G; Slotte JP; Molander O; Rosenholm JB
    Biotechnol Bioeng; 1992 Jan; 39(2):218-24. PubMed ID: 18600934
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Esterification reactions catalyzed by lipases immobilized in organogels: effect of temperature and substrate diffusion.
    Zoumpanioti M; Parmaklis P; de María PD; Stamatis H; Sinisterra JV; Xenakis A
    Biotechnol Lett; 2008 Sep; 30(9):1627-31. PubMed ID: 18427927
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ion pairs of crystal violet in sodium bis(2-ethylhexyl)sulfosuccinate reverse micelles.
    Oliveira CS; Bastos EL; Duarte EL; Itri R; Baptista MS
    Langmuir; 2006 Oct; 22(21):8718-26. PubMed ID: 17014109
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characteristics of lipase-catalyzed hydrolysis of olive oil in AOT-isooctane reversed micelles.
    Han D; Rhee JS
    Biotechnol Bioeng; 1986 Aug; 28(8):1250-5. PubMed ID: 18555453
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 1-Monoglyceride production from lipase-catalyzed esterification of glycerol and fatty acid in reverse micelles.
    Hayes DG; Gulari E
    Biotechnol Bioeng; 1991 Aug; 38(5):507-17. PubMed ID: 18604809
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spectrometric study of AOT-hydrolysis reaction in water/AOT/isooctane microemulsions using phenolphthalein as a chemical probe.
    Mao S; Chen Z; Fan D; An X; Shen W
    J Phys Chem A; 2012 Jan; 116(1):158-65. PubMed ID: 22168828
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Esterification reactions catalyzed by Chromobacterium viscosum lipase in CTAB-based microemulsion systems.
    Rees GD; Robinson BH
    Biotechnol Bioeng; 1995 Feb; 45(4):344-55. PubMed ID: 18623188
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The use of reverse micelles for the simultaneous extraction of oil and proteins from vegetable meal.
    Leser ME; Luisi PL; Paimieri S
    Biotechnol Bioeng; 1989 Nov; 34(9):1140-6. PubMed ID: 18588211
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative Study on the Structure of Water in Reverse Micelles Stabilized with Sodium Bis(2-ethylhexyl) Sulfosuccinate or Sodium Bis(2-ethylhexyl) Phosphate in n-Heptane.
    Li Q; Li T; Wu J; Zhou N
    J Colloid Interface Sci; 2000 Sep; 229(1):298-302. PubMed ID: 10942571
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ester aminolysis by morpholine in AOT-based water-in-oil microemulsions.
    García-Rio L; Mejuto JC; Pérez-Lorenzo M
    J Colloid Interface Sci; 2006 Sep; 301(2):624-30. PubMed ID: 16777123
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of urea on the enzymatic activity of a lipase entrapped in AOT-heptane-water reverse micellar solutions.
    Abuin E; Lissi E; Solar C
    J Colloid Interface Sci; 2005 Mar; 283(1):87-93. PubMed ID: 15694427
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of changes in water properties on reactivity in strongly acidic microemulsions.
    Fernández E; García-Río L; Parajó M; Rodriguez-Dafonte P
    J Phys Chem B; 2007 May; 111(19):5193-203. PubMed ID: 17439275
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Study of vitamin ester synthesis by lipase-catalyzed transesterification in organic media.
    Maugard T; Tudella J; Legoy MD
    Biotechnol Prog; 2000; 16(3):358-62. PubMed ID: 10835235
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lipase reaction in AOT-isooctane reversed micelles: effect of water on equilibria.
    Han D; Rhee JS; Lee SB
    Biotechnol Bioeng; 1987 Aug; 30(3):381-8. PubMed ID: 18581372
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surfactant tail length-dependent lipase activity profile in cationic water-in-oil microemulsions.
    Dasgupta A; Das D; Mitra RN; Das PK
    J Colloid Interface Sci; 2005 Sep; 289(2):566-73. PubMed ID: 16112238
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.