BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 18613313)

  • 1. Utilization of osmoprotective compounds by hybridoma cells exposed to hyperosmotic stress.
    Oyaas K; Ellingsen TE; Dyrset N; Levine DW
    Biotechnol Bioeng; 1994 Jan; 43(1):77-89. PubMed ID: 18613313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyperosmotic hbridoma cell cultures: Increased monoclonal antibody production with addition of glycine betaine.
    Oyaas K; Ellingsen TE; Dyrset N; Levine DW
    Biotechnol Bioeng; 1994 Oct; 44(8):991-8. PubMed ID: 18618918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport of osmoprotective compounds in hybridoma cells exposed to hyperosmotic stress.
    Oyaas K; Ellingsen TE; Dyrset N; Levine DW
    Cytotechnology; 1995 Oct; 17(3):143-51. PubMed ID: 22358554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osmoprotective effect of glycine betaine on thrombopoietin production in hyperosmotic Chinese hamster ovary cell culture: clonal variations.
    Kim TK; Ryu JS; Chung JY; Kim MS; Lee GM
    Biotechnol Prog; 2000; 16(5):775-81. PubMed ID: 11027169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selected amino acids protect hybridoma and CHO cells from elevated carbon dioxide and osmolality.
    deZengotita VM; Abston LR; Schmelzer AE; Shaw S; Miller WM
    Biotechnol Bioeng; 2002 Jun; 78(7):741-52. PubMed ID: 12001166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osmoprotective effect of glycine betaine on foreign protein production in hyperosmotic recombinant chinese hamster ovary cell cultures differs among cell lines.
    Ryu JS; Kim TK; Chung JY; Lee GM
    Biotechnol Bioeng; 2000 Oct; 70(2):167-75. PubMed ID: 10972928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of cytoplasmic osmolytes, water, and crowding in the response of Escherichia coli to osmotic stress: biophysical basis of osmoprotection by glycine betaine.
    Cayley S; Record MT
    Biochemistry; 2003 Nov; 42(43):12596-609. PubMed ID: 14580206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tolerance to high osmolality of the lactic acid bacterium Oenococcus oeni and identification of potential osmoprotectants.
    Le Marrec C; Bon E; Lonvaud-Funel A
    Int J Food Microbiol; 2007 Apr; 115(3):335-42. PubMed ID: 17320992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Origins of the osmoprotective properties of betaine and proline in Escherichia coli K-12.
    Cayley S; Lewis BA; Record MT
    J Bacteriol; 1992 Mar; 174(5):1586-95. PubMed ID: 1537801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of osmolyte betaine synthesizing sarcosine dimethylglycine N-methyltransferase from Methanohalophilus portucalensis.
    Chen SY; Lai MC; Lai SJ; Lee YC
    Arch Microbiol; 2009 Oct; 191(10):735-43. PubMed ID: 19693490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uptake of glycine betaine and its analogues by bacteroids of Rhizobium meliloti.
    Fougère F; Le Rudulier D
    J Gen Microbiol; 1990 Jan; 136(1):157-63. PubMed ID: 2351954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of osmoprotectant compounds on NCAM polysialylation under hyperosmotic stress and elevated pCO(2).
    Schmelzer AE; Miller WM
    Biotechnol Bioeng; 2002 Feb; 77(4):359-68. PubMed ID: 11787009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Staphylococcus aureus osmoregulation: roles for choline, glycine betaine, proline, and taurine.
    Graham JE; Wilkinson BJ
    J Bacteriol; 1992 Apr; 174(8):2711-6. PubMed ID: 1556089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation of glycine betaine and proline betaine from human urine. Assessment of their role as osmoprotective agents for bacteria and the kidney.
    Chambers ST; Kunin CM
    J Clin Invest; 1987 Mar; 79(3):731-7. PubMed ID: 3546377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced stress tolerance in Escherichia coli and Nicotiana tabacum expressing a betaine aldehyde dehydrogenase/choline dehydrogenase fusion protein.
    Yilmaz JL; Bülow L
    Biotechnol Prog; 2002; 18(6):1176-82. PubMed ID: 12467448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The organic osmolytes betaine and proline are transported by a shared system in early preimplantation mouse embryos.
    Anas MK; Hammer MA; Lever M; Stanton JA; Baltz JM
    J Cell Physiol; 2007 Jan; 210(1):266-77. PubMed ID: 17044075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of substrate and potassium on the betaine-synthesizing enzyme glycine sarcosine dimethylglycine N-methyltransferase from a halophilic methanoarchaeon Methanohalophilus portucalensis.
    Lai MC; Wang CC; Chuang MJ; Wu YC; Lee YC
    Res Microbiol; 2006 Dec; 157(10):948-55. PubMed ID: 17098399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of NaCl-induced osmotic stress on intracellular concentrations of glycine betaine and potassium in Escherichia coli, Enterococcus faecalis, and staphylococci.
    Kunin CM; Rudy J
    J Lab Clin Med; 1991 Sep; 118(3):217-24. PubMed ID: 1919294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulatory factors associated with synthesis of the osmolyte glycine betaine in the halophilic methanoarchaeon Methanohalophilus portucalensis.
    Lai MC; Yang DR; Chuang MJ
    Appl Environ Microbiol; 1999 Feb; 65(2):828-33. PubMed ID: 9925623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypersaline stress induces the turnover of phosphatidylcholine and results in the synthesis of the renal osmoprotectant glycerophosphocholine in Saccharomyces cerevisiae.
    Kiewietdejonge A; Pitts M; Cabuhat L; Sherman C; Kladwang W; Miramontes G; Floresvillar J; Chan J; Ramirez RM
    FEMS Yeast Res; 2006 Mar; 6(2):205-17. PubMed ID: 16487344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.