These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 18613315)

  • 41. Xylanase production by Aspergillus awamori. Development of a medium and optimization of the fermentation parameters for the production of extracellular xylanase and beta-xylosidase while maintaining low protease production.
    Smith DC; Wood TM
    Biotechnol Bioeng; 1991 Oct; 38(8):883-90. PubMed ID: 18600845
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Spontaneous chemical reversion of an active site mutation: deamidation of an asparagine residue replacing the catalytic aspartic acid of glutamate dehydrogenase.
    Paradisi F; Dean JL; Geoghegan KF; Engel PC
    Biochemistry; 2005 Mar; 44(9):3636-43. PubMed ID: 15736973
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Probing structural determinants specifying high thermostability in Bacillus licheniformis alpha-amylase.
    Declerck N; Machius M; Wiegand G; Huber R; Gaillardin C
    J Mol Biol; 2000 Aug; 301(4):1041-57. PubMed ID: 10966804
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cell surface engineering of yeast: construction of arming yeast with biocatalyst.
    Ueda M; Tanaka A
    J Biosci Bioeng; 2000; 90(2):125-36. PubMed ID: 16232831
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Increased D-allose production by the R132E mutant of ribose-5-phosphate isomerase from Clostridium thermocellum.
    Yeom SJ; Seo ES; Kim YS; Oh DK
    Appl Microbiol Biotechnol; 2011 Mar; 89(6):1859-66. PubMed ID: 21132286
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Physiochemical properties and kinetics of glucoamylase produced from deoxy-d-glucose resistant mutant of
    Riaz M; Rashid MH; Sawyer L; Akhtar S; Javed MR; Nadeem H; Wear M
    Food Chem; 2012 Jan; 130(1):24-30. PubMed ID: 24293795
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Glucoamylase from Thermoanaerobacterium thermosaccharolyticum: Sequence studies and analysis of the macromolecular architecture of the enzyme.
    Ducki A; Grundmann O; Konermann L; Mayer F; Hoppert M
    J Gen Appl Microbiol; 1998 Oct; 44(5):327-335. PubMed ID: 12501412
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Improving Thermostability of Chimeric Enzymes Generated by Domain Shuffling Between Two Different Original Glucoamylases.
    Chen Z; Wang L; Shen Y; Hu D; Zhou L; Lu F; Li M
    Front Bioeng Biotechnol; 2022; 10():881421. PubMed ID: 35449593
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Production and Characteristics of Raw Starch-Digesting Glucoamylase O from a Protease-Negative, Glycosidase-Negative Aspergillus awamori var. kawachi Mutant.
    Flor PQ; Hayashida S
    Appl Environ Microbiol; 1983 Mar; 45(3):905-12. PubMed ID: 16346254
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Intrinsic kinetic parameters of the pellet forming fungus aspergillus awamori.
    Hellendoorn L; Mulder H; van den Heuvel JC ; Ottengraf SP
    Biotechnol Bioeng; 1998 Jun; 58(5):478-85. PubMed ID: 10099283
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Role of glucose signaling in yeast metabolism.
    van Dam K
    Biotechnol Bioeng; 1996 Oct; 52(1):161-5. PubMed ID: 18629862
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Induction of glucoamylase production by non-starchy carbohydrates inAspergillus terreus.
    Ali S; Hossain Z; Mahmood S; Alam R
    World J Microbiol Biotechnol; 1990 Mar; 6(1):19-22. PubMed ID: 24429884
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In Silico Prediction Method for Protein Asparagine Deamidation.
    Jia L; Sun Y
    Methods Mol Biol; 2023; 2552():199-217. PubMed ID: 36346593
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Protein asparagine deamidation prediction based on structures with machine learning methods.
    Jia L; Sun Y
    PLoS One; 2017; 12(7):e0181347. PubMed ID: 28732052
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Solid State Fermentation of a Raw Starch Digesting Alkaline Alpha-Amylase from Bacillus licheniformis RT7PE1 and Its Characteristics.
    Tabassum R; Khaliq S; Rajoka MI; Agblevor F
    Biotechnol Res Int; 2014; 2014():495384. PubMed ID: 24587909
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Kinetics of high-Level of ß-glucosidase production by a 2-deoxyglucose-resistant mutant of Humicola lanuginosa in submerged fermentation.
    Bokhari SA; Latif F; Rajoka MI
    Braz J Microbiol; 2008 Oct; 39(4):724-33. PubMed ID: 24031297
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Directed evolution of Aspergillus niger glucoamylase to increase thermostability.
    McDaniel A; Fuchs E; Liu Y; Ford C
    Microb Biotechnol; 2008 Nov; 1(6):523-31. PubMed ID: 21261873
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Increased thermostability of Asn182 --> Ala mutant Aspergillus awamori glucoamylase.
    Reilly PJ; Chen HM; Bakir U; Ford C
    Biotechnol Bioeng; 1994 Jan; 43(1):101-5. PubMed ID: 18613315
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mutational modulation of substrate bond-type specificity and thermostability of glucoamylase from Aspergillus awamori by replacement with short homologue active site sequences and thiol/disulfide engineering.
    Fierobe HP; Stoffer BB; Frandsen TP; Svensson B
    Biochemistry; 1996 Jul; 35(26):8696-704. PubMed ID: 8679632
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Overexpression and characterization of Aspergillus awamori wild-type and mutant glucoamylase secreted by the methylotrophic yeast Pichia pastoris: comparison with wild-type recombinant glucoamylase produced using Saccharomyces cerevisiae and Aspergillus niger as hosts.
    Fierobe HP; Mirgorodskaya E; Frandsen TP; Roepstorff P; Svensson B
    Protein Expr Purif; 1997 Mar; 9(2):159-70. PubMed ID: 9056481
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.