These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
375 related articles for article (PubMed ID: 18613648)
1. Role of fluorosurfactant-modified gold nanoparticles in selective detection of homocysteine thiolactone: remover and sensor. Huang CC; Tseng WL Anal Chem; 2008 Aug; 80(16):6345-50. PubMed ID: 18613648 [TBL] [Abstract][Full Text] [Related]
2. Sodium hydroxide as pretreatment and fluorosurfactant-capped gold nanoparticles as sensor for the highly selective detection of cysteine. Wu HP; Huang CC; Cheng TL; Tseng WL Talanta; 2008 Jul; 76(2):347-52. PubMed ID: 18585288 [TBL] [Abstract][Full Text] [Related]
3. Fluorescent sensing of homocysteine in urine: using fluorosurfactant-capped gold nanoparticles and o-Phthaldialdehyde. Lin JH; Chang CW; Tseng WL Analyst; 2010 Jan; 135(1):104-10. PubMed ID: 20024188 [TBL] [Abstract][Full Text] [Related]
4. Specific detection of cysteine and homocysteine in biological fluids by tuning the pH values of fluorosurfactant-stabilized gold colloidal solution. Xiao Q; Shang F; Xu X; Li Q; Lu C; Lin JM Biosens Bioelectron; 2011 Dec; 30(1):211-5. PubMed ID: 21978483 [TBL] [Abstract][Full Text] [Related]
5. Highly selective detection of histidine using o-phthaldialdehyde derivatization after the removal of aminothiols through Tween 20-capped gold nanoparticles. Huang CC; Tseng WL Analyst; 2009 Aug; 134(8):1699-705. PubMed ID: 20448940 [TBL] [Abstract][Full Text] [Related]
6. Selective enrichment of aminothiols using polysorbate 20-capped gold nanoparticles followed by capillary electrophoresis with laser-induced fluorescence. Shen CC; Tseng WL; Hsieh MM J Chromatogr A; 2009 Jan; 1216(2):288-93. PubMed ID: 19058808 [TBL] [Abstract][Full Text] [Related]
7. Nonionic surfactant-capped gold nanoparticles for selective enrichment of aminothiols prior to CE with UV absorption detection. Li MD; Cheng TL; Tseng WL Electrophoresis; 2009 Jan; 30(2):388-95. PubMed ID: 19204952 [TBL] [Abstract][Full Text] [Related]
8. Colorimetric assay for S-adenosylhomocysteine hydrolase activity and inhibition using fluorosurfactant-capped gold nanoparticles. Lin JH; Chang CW; Wu ZH; Tseng WL Anal Chem; 2010 Nov; 82(21):8775-9. PubMed ID: 20945873 [TBL] [Abstract][Full Text] [Related]
9. Fluorosurfactant-prepared triangular gold nanoparticles as postcolumn chemiluminescence reagents for high-performance liquid chromatography assay of low molecular weight aminothiols in biological fluids. Li Q; Shang F; Lu C; Zheng Z; Lin JM J Chromatogr A; 2011 Dec; 1218(50):9064-70. PubMed ID: 22055524 [TBL] [Abstract][Full Text] [Related]
10. Gold nanoparticle extraction followed by o-phthaldialdehyde derivatization for fluorescence sensing of different forms of homocysteine in plasma. Lai YJ; Tseng WL Talanta; 2012 Mar; 91():103-9. PubMed ID: 22365687 [TBL] [Abstract][Full Text] [Related]
11. Specific postcolumn detection method for HPLC assay of homocysteine based on aggregation of fluorosurfactant-capped gold nanoparticles. Lu C; Zu Y; Yam VW Anal Chem; 2007 Jan; 79(2):666-72. PubMed ID: 17222035 [TBL] [Abstract][Full Text] [Related]
12. Colorimetric detection of mercury(II) in a high-salinity solution using gold nanoparticles capped with 3-mercaptopropionate acid and adenosine monophosphate. Yu CJ; Tseng WL Langmuir; 2008 Nov; 24(21):12717-22. PubMed ID: 18839969 [TBL] [Abstract][Full Text] [Related]
13. Colorimetric detection of cephradine in pharmaceutical formulations via fluorosurfactant-capped gold nanoparticles. Lu C; Zhang N; Li J; Li Q Talanta; 2010 Apr; 81(1-2):698-702. PubMed ID: 20188984 [TBL] [Abstract][Full Text] [Related]
14. Sensitivity enhancement in the colorimetric detection of lead(II) ion using gallic acid-capped gold nanoparticles: improving size distribution and minimizing interparticle repulsion. Huang KW; Yu CJ; Tseng WL Biosens Bioelectron; 2010 Jan; 25(5):984-9. PubMed ID: 19782557 [TBL] [Abstract][Full Text] [Related]
15. Effects of Mn2+ on oligonucleotide-gold nanoparticle hybrids for colorimetric sensing of Hg2+: improving colorimetric sensitivity and accelerating color change. Yu CJ; Cheng TL; Tseng WL Biosens Bioelectron; 2009 Sep; 25(1):204-10. PubMed ID: 19631521 [TBL] [Abstract][Full Text] [Related]
16. Gold nanoparticle extraction followed by capillary electrophoresis to determine the total, free, and protein-bound aminothiols in plasma. Chang CW; Tseng WL Anal Chem; 2010 Apr; 82(7):2696-702. PubMed ID: 20201506 [TBL] [Abstract][Full Text] [Related]
17. Anti-aggregation of gold nanoparticle-based colorimetric sensor for glutathione with excellent selectivity and sensitivity. Li Y; Wu P; Xu H; Zhang H; Zhong X Analyst; 2011 Jan; 136(1):196-200. PubMed ID: 20931106 [TBL] [Abstract][Full Text] [Related]
18. Chemiluminescence sensing of aminothiols in biological fluids using peroxymonocarbonate-prepared networked gold nanoparticles. Zhang L; Lu B; Lu C Analyst; 2013 Feb; 138(3):850-5. PubMed ID: 23198282 [TBL] [Abstract][Full Text] [Related]
19. Colorimetric detection of lysozyme based on electrostatic interaction with human serum albumin-modified gold nanoparticles. Chen YM; Yu CJ; Cheng TL; Tseng WL Langmuir; 2008 Apr; 24(7):3654-60. PubMed ID: 18278964 [TBL] [Abstract][Full Text] [Related]
20. Fluorosurfactant-capped gold nanoparticles-enhanced chemiluminescence from hydrogen peroxide-hydroxide and hydrogen peroxide-bicarbonate in presence of cobalt(II). Li J; Li Q; Lu C; Zhao L; Lin JM Spectrochim Acta A Mol Biomol Spectrosc; 2011 Feb; 78(2):700-5. PubMed ID: 21186138 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]