BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

534 related articles for article (PubMed ID: 18613669)

  • 1. Theory of 1,3-dipolar cycloadditions: distortion/interaction and frontier molecular orbital models.
    Ess DH; Houk KN
    J Am Chem Soc; 2008 Aug; 130(31):10187-98. PubMed ID: 18613669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A clear correlation between the diradical character of 1,3-dipoles and their reactivity toward ethylene or acetylene.
    Braida B; Walter C; Engels B; Hiberty PC
    J Am Chem Soc; 2010 Jun; 132(22):7631-7. PubMed ID: 20481497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactivity and regioselectivity in 1,3-dipolar cycloadditions of azides to strained alkynes and alkenes: a computational study.
    Schoenebeck F; Ess DH; Jones GO; Houk KN
    J Am Chem Soc; 2009 Jun; 131(23):8121-33. PubMed ID: 19459632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of 1,3-dipolar cycloadditions: energy partitioning of reactants and quantitation of synchronicity.
    Xu L; Doubleday CE; Houk KN
    J Am Chem Soc; 2010 Mar; 132(9):3029-37. PubMed ID: 20148587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thinking out of the black box: accurate barrier heights of 1,3-dipolar cycloadditions of ozone with acetylene and ethylene.
    Wheeler SE; Ess DH; Houk KN
    J Phys Chem A; 2008 Feb; 112(8):1798-807. PubMed ID: 18247512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predictions of substituent effects in thermal azide 1,3-dipolar cycloadditions: implications for dynamic combinatorial (reversible) and click (irreversible) chemistry.
    Jones GO; Houk KN
    J Org Chem; 2008 Feb; 73(4):1333-42. PubMed ID: 18211089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transition states for the dimerization of 1,3-cyclohexadiene: a DFT, CASPT2, and CBS-QB3 quantum mechanical investigation.
    Ess DH; Hayden AE; Klärner FG; Houk KN
    J Org Chem; 2008 Oct; 73(19):7586-92. PubMed ID: 18763823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation energies of pericyclic reactions: performance of DFT, MP2, and CBS-QB3 methods for the prediction of activation barriers and reaction energetics of 1,3-dipolar cycloadditions, and revised activation enthalpies for a standard set of hydrocarbon pericyclic reactions.
    Ess DH; Houk KN
    J Phys Chem A; 2005 Oct; 109(42):9542-53. PubMed ID: 16866406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative theoretical study of 1,3-dipolar cycloadditions of allyl-anion type dipoles to free and Pt-bound nitriles.
    Kuznetsov ML; Kukushkin VY; Pombeiro AJ
    J Org Chem; 2010 Mar; 75(5):1474-90. PubMed ID: 20141125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cycloaddition reactions of butadiene and 1,3-dipoles to curved arenes, fullerenes, and nanotubes: theoretical evaluation of the role of distortion energies on activation barriers.
    Osuna S; Houk KN
    Chemistry; 2009 Dec; 15(47):13219-31. PubMed ID: 19876972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical study of reactant activation in 1,3-dipolar cycloadditions of cyclic nitrones to free and Pt-bound nitriles.
    Kuznetsov ML; Kukushkin VY
    J Org Chem; 2006 Jan; 71(2):582-92. PubMed ID: 16408968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of the hydration of carbon dioxide: direct participation of H2O versus microsolvation.
    Nguyen MT; Matus MH; Jackson VE; Vu TN; Rustad JR; Dixon DA
    J Phys Chem A; 2008 Oct; 112(41):10386-98. PubMed ID: 18816037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic aspects of propene epoxidation by hydrogen peroxide. Catalytic role of water molecules, external electric field, and zeolite framework of TS-1.
    Stare J; Henson NJ; Eckert J
    J Chem Inf Model; 2009 Apr; 49(4):833-46. PubMed ID: 19267473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational methods to calculate accurate activation and reaction energies of 1,3-dipolar cycloadditions of 24 1,3-dipoles.
    Lan Y; Zou L; Cao Y; Houk KN
    J Phys Chem A; 2011 Dec; 115(47):13906-20. PubMed ID: 21967148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phospha-Münchnones: electronic structures and 1,3-dipolar cycloadditions.
    St-Cyr DJ; Morin MS; Bélanger-Gariépy F; Arndtsen BA; Krenske EH; Houk KN
    J Org Chem; 2010 Jun; 75(12):4261-73. PubMed ID: 20481447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A combined effective fragment potential-fragment molecular orbital method. I. The energy expression and initial applications.
    Nagata T; Fedorov DG; Kitaura K; Gordon MS
    J Chem Phys; 2009 Jul; 131(2):024101. PubMed ID: 19603964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transition states of strain-promoted metal-free click chemistry: 1,3-dipolar cycloadditions of phenyl azide and cyclooctynes.
    Ess DH; Jones GO; Houk KN
    Org Lett; 2008 Apr; 10(8):1633-6. PubMed ID: 18363405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redistributed charge and dipole schemes for combined quantum mechanical and molecular mechanical calculations.
    Lin H; Truhlar DG
    J Phys Chem A; 2005 May; 109(17):3991-4004. PubMed ID: 16833721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactivity of alkanes on zeolites: a computational study of propane conversion reactions.
    Zheng X; Blowers P
    J Phys Chem A; 2005 Dec; 109(47):10734-41. PubMed ID: 16863122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modular mesoionics: understanding and controlling regioselectivity in 1,3-dipolar cycloadditions of Münchnone derivatives.
    Morin MS; St-Cyr DJ; Arndtsen BA; Krenske EH; Houk KN
    J Am Chem Soc; 2013 Nov; 135(46):17349-58. PubMed ID: 24134494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.