BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

534 related articles for article (PubMed ID: 18613669)

  • 41. Concerted and stepwise reaction mechanisms for the addition of ozone to acetylene: a computational study.
    Chan WT; Weng C; Goddard JD
    J Phys Chem A; 2007 Jun; 111(22):4792-803. PubMed ID: 17500541
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Guanine alkylation by ethylene oxide: calculation of chemical reactivity.
    Kranjc A; Mavri J
    J Phys Chem A; 2006 May; 110(17):5740-4. PubMed ID: 16640367
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Proton as the simplest of all catalysts for [2 + 2] cycloadditions: DFT study of acid-catalyzed imine metathesis.
    Burland MC; Meyer TY; Baik MH
    J Org Chem; 2004 Sep; 69(19):6173-84. PubMed ID: 15357575
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The fragment molecular orbital method for geometry optimizations of polypeptides and proteins.
    Fedorov DG; Ishida T; Uebayasi M; Kitaura K
    J Phys Chem A; 2007 Apr; 111(14):2722-32. PubMed ID: 17388363
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Reactivity for the Diels-Alder reaction of cumulenes: a distortion-interaction analysis along the reaction pathway.
    Liu S; Lei Y; Qi X; Lan Y
    J Phys Chem A; 2014 Apr; 118(14):2638-45. PubMed ID: 24576078
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reaction paths of the water-assisted solvolysis of N,N-dimethylformamide.
    Tsuchida N; Satou H; Yamabe S
    J Phys Chem A; 2007 Jul; 111(28):6296-303. PubMed ID: 17580828
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fragment Molecular Orbital method-based Molecular Dynamics (FMO-MD) as a simulator for chemical reactions in explicit solvation.
    Komeiji Y; Ishikawa T; Mochizuki Y; Yamataka H; Nakano T
    J Comput Chem; 2009 Jan; 30(1):40-50. PubMed ID: 18504778
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cycloadditions of 16-Electron 1,3-Dipoles with Ethylene. A Density Functional and CCSD(T) Study.
    Su MD; Liao HY; Chung WS; Chu SY
    J Org Chem; 1999 Sep; 64(18):6710-6716. PubMed ID: 11674676
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Quantum chemical quantification of weakly polar interaction energies in the TC5b miniprotein.
    Hatfield MP; Palermo NY; Csontos J; Murphy RF; Lovas S
    J Phys Chem B; 2008 Mar; 112(11):3503-8. PubMed ID: 18303883
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Computational study of the 1,3-dipolar cycloaddition between methyl 2-trifluorobutynoate and substituted azides in terms of reactivity indices and activation parameters.
    Salah M; Komiha N; Kabbaj OK; Ghailane R; Marakchi K
    J Mol Graph Model; 2017 May; 73():143-151. PubMed ID: 28279822
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Estimating regio and stereoselectivity in [4+2] cycloadditions of vinyl-substituted cyclic dienes with maleic anhydride.
    Gayatri G; Sastry GN
    J Phys Chem A; 2009 Oct; 113(43):12013-21. PubMed ID: 19791752
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Electrostatic potential topography for exploring electronic reorganizations in 1,3 dipolar cycloadditions.
    Balanarayan P; Kavathekar R; Gadre SR
    J Phys Chem A; 2007 Apr; 111(14):2733-8. PubMed ID: 17388364
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Convergence in the QM-only and QM/MM modeling of enzymatic reactions: A case study for acetylene hydratase.
    Liao RZ; Thiel W
    J Comput Chem; 2013 Oct; 34(27):2389-97. PubMed ID: 23913757
    [TBL] [Abstract][Full Text] [Related]  

  • 54. "Amide resonance" correlates with a breadth of C-N rotation barriers.
    Kemnitz CR; Loewen MJ
    J Am Chem Soc; 2007 Mar; 129(9):2521-8. PubMed ID: 17295481
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A theoretical exploration of the 1,3-dipolar cycloadditions onto the sidewalls of (n,n) armchair single-wall carbon nanotubes.
    Lu X; Tian F; Xu X; Wang N; Zhang Q
    J Am Chem Soc; 2003 Aug; 125(34):10459-64. PubMed ID: 12926971
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cycloaddition Reactivities Analyzed by Energy Decomposition Analyses and the Frontier Molecular Orbital Model.
    Sengupta A; Li B; Svatunek D; Liu F; Houk KN
    Acc Chem Res; 2022 Sep; 55(17):2467-2479. PubMed ID: 36007242
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Chemical reactivity as a tool to study carcinogenicity: reaction between chloroethylene oxide and guanine.
    Bren U; Zupan M; Guengerich FP; Mavri J
    J Org Chem; 2006 May; 71(11):4078-84. PubMed ID: 16709046
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Activation-strain analysis reveals unexpected origin of fast reactivity in heteroaromatic azadiene inverse-electron-demand diels-alder cycloadditions.
    Talbot A; Devarajan D; Gustafson SJ; Fernández I; Bickelhaupt FM; Ess DH
    J Org Chem; 2015 Jan; 80(1):548-58. PubMed ID: 25490250
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Quantum chemical evaluation of the astrochemical significance of reactions between S atom and acetylene or ethylene.
    Woon DE
    J Phys Chem A; 2007 Nov; 111(44):11249-53. PubMed ID: 17536790
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tunneling molecular dynamics in the light of the corpuscular-wave dualism theory.
    Latanowicz L; Filipek P
    J Phys Chem A; 2007 Aug; 111(32):7695-702. PubMed ID: 17629253
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.