These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 18613673)
1. Microwave activation of enzymatic catalysis. Young DD; Nichols J; Kelly RM; Deiters A J Am Chem Soc; 2008 Aug; 130(31):10048-9. PubMed ID: 18613673 [TBL] [Abstract][Full Text] [Related]
2. Thermophilic glycosynthases for oligosaccharides synthesis. Cobucci-Ponzano B; Perugino G; Strazzulli A; Rossi M; Moracci M Methods Enzymol; 2012; 510():273-300. PubMed ID: 22608732 [TBL] [Abstract][Full Text] [Related]
3. Biochemical analysis of Thermotoga maritima GH36 alpha-galactosidase (TmGalA) confirms the mechanistic commonality of clan GH-D glycoside hydrolases. Comfort DA; Bobrov KS; Ivanen DR; Shabalin KA; Harris JM; Kulminskaya AA; Brumer H; Kelly RM Biochemistry; 2007 Mar; 46(11):3319-30. PubMed ID: 17323919 [TBL] [Abstract][Full Text] [Related]
4. A comparative infrared spectroscopic study of glycoside hydrolases from extremophilic archaea revealed different molecular mechanisms of adaptation to high temperatures. Ausili A; Cobucci-Ponzano B; Di Lauro B; D'Avino R; Perugino G; Bertoli E; Scirè A; Rossi M; Tanfani F; Moracci M Proteins; 2007 Jun; 67(4):991-1001. PubMed ID: 17357157 [TBL] [Abstract][Full Text] [Related]
5. Construction of the bifunctional enzyme cellulase-beta-glucosidase from the hyperthermophilic bacterium Thermotoga maritima. Hong SY; Lee JS; Cho KM; Math RK; Kim YH; Hong SJ; Cho YU; Cho SJ; Kim H; Yun HD Biotechnol Lett; 2007 Jun; 29(6):931-6. PubMed ID: 17333463 [TBL] [Abstract][Full Text] [Related]
6. Maillard reactions and increased enzyme inactivation during oligosaccharide synthesis by a hyperthermophilic glycosidase. Bruins ME; Van Hellemond EW; Janssen AE; Boom RM Biotechnol Bioeng; 2003 Mar; 81(5):546-52. PubMed ID: 12514803 [TBL] [Abstract][Full Text] [Related]
7. Complete saccharification of β-glucan using hyperthermophilic endocellulase and β-glucosidase from Pyrococcus furiosus. Kataoka M; Ishikawa K Biosci Biotechnol Biochem; 2014; 78(9):1537-41. PubMed ID: 25209501 [TBL] [Abstract][Full Text] [Related]
8. Increased susceptibility of beta-glucosidase from the hyperthermophile Pyrococcus furiosus to thermal inactivation at higher pressures. Bruins ME; Meersman F; Janssen AE; Heremans K; Boom RM FEBS J; 2009 Jan; 276(1):109-17. PubMed ID: 19019084 [TBL] [Abstract][Full Text] [Related]
9. Elevated expression temperature in a mesophilic host results in increased secretion of a hyperthermophilic enzyme and decreased cell stress. Smith JD; Richardson NE; Robinson AS Biochim Biophys Acta; 2005 Aug; 1752(1):18-25. PubMed ID: 16112628 [TBL] [Abstract][Full Text] [Related]
10. Comparative analysis of three hyperthermophilic GH1 and GH3 family members with industrial potential. Cota J; Corrêa TL; Damásio AR; Diogo JA; Hoffmam ZB; Garcia W; Oliveira LC; Prade RA; Squina FM N Biotechnol; 2015 Jan; 32(1):13-20. PubMed ID: 25102284 [TBL] [Abstract][Full Text] [Related]
11. Structural, kinetic, and thermodynamic analysis of glucoimidazole-derived glycosidase inhibitors. Gloster TM; Roberts S; Perugino G; Rossi M; Moracci M; Panday N; Terinek M; Vasella A; Davies GJ Biochemistry; 2006 Oct; 45(39):11879-84. PubMed ID: 17002288 [TBL] [Abstract][Full Text] [Related]
12. Entrapment in E. coli improves the operational stability of recombinant beta-glycosidase CelB from Pyrococcus furiosus and facilitates biocatalyst recovery. Kamrat T; Nidetzky B J Biotechnol; 2007 Mar; 129(1):69-76. PubMed ID: 17212972 [TBL] [Abstract][Full Text] [Related]
13. The effect of microwave irradiation on enzymatic hydrolysis of rice straw. Zhu S; Wu Y; Yu Z; Zhang X; Li H; Gao M Bioresour Technol; 2006 Oct; 97(15):1964-8. PubMed ID: 16216494 [TBL] [Abstract][Full Text] [Related]
14. Synergism between microwave irradiation and enzyme catalysis in transesterification of ethyl-3-phenylpropanoate with n-butanol. Yadav GD; Pawar SV Bioresour Technol; 2012 Apr; 109():1-6. PubMed ID: 22305539 [TBL] [Abstract][Full Text] [Related]
15. A novel alpha-D-galactosynthase from Thermotoga maritima converts beta-D-galactopyranosyl azide to alpha-galacto-oligosaccharides. Cobucci-Ponzano B; Zorzetti C; Strazzulli A; Carillo S; Bedini E; Corsaro MM; Comfort DA; Kelly RM; Rossi M; Moracci M Glycobiology; 2011 Apr; 21(4):448-56. PubMed ID: 21084405 [TBL] [Abstract][Full Text] [Related]
16. α-Galactobiosyl units: thermodynamics and kinetics of their formation by transglycosylations catalysed by the GH36 α-galactosidase from Thermotoga maritima. Borisova AS; Ivanen DR; Bobrov KS; Eneyskaya EV; Rychkov GN; Sandgren M; Kulminskaya AA; Sinnott ML; Shabalin KA Carbohydr Res; 2015 Jan; 401():115-21. PubMed ID: 25486100 [TBL] [Abstract][Full Text] [Related]
17. Strategic selection of hyperthermophilic esterases for resolution of 2-arylpropionic esters. Sehgal AC; Kelly RM Biotechnol Prog; 2003; 19(5):1410-6. PubMed ID: 14524700 [TBL] [Abstract][Full Text] [Related]
18. Engineering the thermostability of a TIM-barrel enzyme by rational family shuffling. Kamondi S; Szilágyi A; Barna L; Závodszky P Biochem Biophys Res Commun; 2008 Oct; 374(4):725-30. PubMed ID: 18667161 [TBL] [Abstract][Full Text] [Related]
19. Activation of anthranilate phosphoribosyltransferase from Sulfolobus solfataricus by removal of magnesium inhibition and acceleration of product release . Schlee S; Deuss M; Bruning M; Ivens A; Schwab T; Hellmann N; Mayans O; Sterner R Biochemistry; 2009 Jun; 48(23):5199-209. PubMed ID: 19385665 [TBL] [Abstract][Full Text] [Related]
20. Enzymatic preparation of maltohexaose, maltoheptaose, and maltooctaose by the preferential cyclomaltooligosaccharide (cyclodextrin) ring-opening reaction of Pyrococcus furiosus thermostable amylase. Yang SJ; Lee HS; Kim JW; Lee MH; Auh JH; Lee BH; Park KH Carbohydr Res; 2006 Feb; 341(3):420-4. PubMed ID: 16364270 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]