These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 18613716)

  • 1. Identification of reactive cysteines in a protein using arsenic labeling and collision-induced dissociation tandem mass spectrometry.
    Lu M; Wang H; Wang Z; Li XF; Le XC
    J Proteome Res; 2008 Aug; 7(8):3080-90. PubMed ID: 18613716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding of dimethylarsinous acid to cys-13alpha of rat hemoglobin is responsible for the retention of arsenic in rat blood.
    Lu M; Wang H; Li XF; Arnold LL; Cohen SM; Le XC
    Chem Res Toxicol; 2007 Jan; 20(1):27-37. PubMed ID: 17226924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and characterization of cysteinyl exposure in proteins by selective mercury labeling and nano-electrospray ionization quadrupole time-of-flight mass spectrometry.
    Lu M; Li XF; Le XC; Weinfeld M; Wang H
    Rapid Commun Mass Spectrom; 2010 Jun; 24(11):1523-32. PubMed ID: 20486248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence of hemoglobin binding to arsenic as a basis for the accumulation of arsenic in rat blood.
    Lu M; Wang H; Li XF; Lu X; Cullen WR; Arnold LL; Cohen SM; Le XC
    Chem Res Toxicol; 2004 Dec; 17(12):1733-42. PubMed ID: 15606151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of the major arsenic-binding protein in rat plasma as the ternary dimethylarsinous-hemoglobin-haptoglobin complex.
    Naranmandura H; Suzuki KT
    Chem Res Toxicol; 2008 Mar; 21(3):678-85. PubMed ID: 18247522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of cysteinylation of pharmaceutical-grade human serum albumin by electrospray ionization mass spectrometry and low-energy collision-induced dissociation tandem mass spectrometry.
    Kleinova M; Belgacem O; Pock K; Rizzi A; Buchacher A; Allmaier G
    Rapid Commun Mass Spectrom; 2005; 19(20):2965-73. PubMed ID: 16178042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of trivalent arsenicals with metallothionein.
    Jiang G; Gong Z; Li XF; Cullen WR; Le XC
    Chem Res Toxicol; 2003 Jul; 16(7):873-80. PubMed ID: 12870890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The molecular mechanism of interaction of trivalent dimethylarsinous acid (DMA(III)) binding to rat hemoglobin].
    Zhang M; Wang WW; Jin HF; Bao LL; Naranmandura H; Qin YJ; Li CH
    Yao Xue Xue Bao; 2014 May; 49(5):666-71. PubMed ID: 25151739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescein as a versatile tag for enhanced selectivity in analyzing cysteine-containing proteins/peptides using mass spectrometry.
    Chen SH; Hsu JL; Lin FS
    Anal Chem; 2008 Jul; 80(13):5251-9. PubMed ID: 18512949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of interactions between arsenicals and thioredoxins (human and E. coli) using mass spectrometry.
    Wang Z; Zhang H; Li XF; Le XC
    Rapid Commun Mass Spectrom; 2007; 21(22):3658-66. PubMed ID: 17939155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly reactive cysteine residues in rodent hemoglobins.
    Miranda JJ
    Biochem Biophys Res Commun; 2000 Aug; 275(2):517-23. PubMed ID: 10964696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective covalent binding of acrylonitrile to Cys 186 in rat liver carbonic anhydrase III in vivo.
    Nerland DE; Cai J; Benz FW
    Chem Res Toxicol; 2003 May; 16(5):583-9. PubMed ID: 12755587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatic digestion and chromatographic analysis of arsenic species released from proteins.
    Lu M; Wang H; Li XF; Lu X; Le XC
    J Chromatogr A; 2009 May; 1216(18):3985-91. PubMed ID: 19327778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The identification of peptide modifications derived from gel-separated proteins using electrospray triple quadrupole and ion trap analyses.
    Swiderek KM; Davis MT; Lee TD
    Electrophoresis; 1998 May; 19(6):989-97. PubMed ID: 9638945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterisation of cisplatin binding sites in human serum proteins using hyphenated multidimensional liquid chromatography and ESI tandem mass spectrometry.
    Will J; Wolters DA; Sheldrick WS
    ChemMedChem; 2008 Nov; 3(11):1696-707. PubMed ID: 18855968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mass spectrometry-based analyses for identifying and characterizing S-nitrosylation of protein tyrosine phosphatases.
    Chen YY; Huang YF; Khoo KH; Meng TC
    Methods; 2007 Jul; 42(3):243-9. PubMed ID: 17532511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Urinary sulfur-containing metabolite produced by intestinal bacteria following oral administration of dimethylarsinic acid to rats.
    Yoshida K; Kuroda K; Zhou X; Inoue Y; Date Y; Wanibuchi H; Fukushima S; Endo G
    Chem Res Toxicol; 2003 Sep; 16(9):1124-9. PubMed ID: 12971800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tandem mass spectrometry acquisition approaches to enhance identification of protein-protein interactions using low-energy collision-induced dissociative chemical crosslinking reagents.
    Soderblom EJ; Bobay BG; Cavanagh J; Goshe MB
    Rapid Commun Mass Spectrom; 2007; 21(21):3395-408. PubMed ID: 17902198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arsenic-induced bladder cancer in an animal model.
    Cohen SM; Ohnishi T; Arnold LL; Le XC
    Toxicol Appl Pharmacol; 2007 Aug; 222(3):258-63. PubMed ID: 17109909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trivalent arsenicals are bound to proteins during reductive methylation.
    Naranmandura H; Suzuki N; Suzuki KT
    Chem Res Toxicol; 2006 Aug; 19(8):1010-8. PubMed ID: 16918239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.