BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 18613718)

  • 1. Highly hydrothermally stable microporous silica membranes for hydrogen separation.
    Wei Q; Wang F; Nie ZR; Song CL; Wang YL; Li QY
    J Phys Chem B; 2008 Aug; 112(31):9354-9. PubMed ID: 18613718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of Pd particle-deposited microporous silica membranes via a vacuum-impregnation method and their gas permeation behavior.
    Lee DW; Yu CY; Lee KH
    J Colloid Interface Sci; 2008 Sep; 325(2):447-52. PubMed ID: 18620361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zirconia-Doped Methylated Silica Membranes via Sol-Gel Process: Microstructure and Hydrogen Permselectivity.
    Wang L; Yang J
    Nanomaterials (Basel); 2022 Jun; 12(13):. PubMed ID: 35808001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of nickel deposition on hydrogen permeation behavior of mesoporous gamma-alumina composite membranes.
    Yu CY; Sea BK; Lee DW; Park SJ; Lee KY; Lee KH
    J Colloid Interface Sci; 2008 Mar; 319(2):470-6. PubMed ID: 18177664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and Characterization of Silica-Tantala Microporous Membranes for Gas Separations Fabricated Using Chemical Vapor Deposition.
    Lundin SB; Wang H; Oyama ST
    Membranes (Basel); 2022 Sep; 12(9):. PubMed ID: 36135909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of silica networks for development of highly permeable hydrogen separation membranes with hydrothermal stability.
    Kanezashi M; Yada K; Yoshioka T; Tsuru T
    J Am Chem Soc; 2009 Jan; 131(2):414-5. PubMed ID: 19113940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Internal surface modification of MFI-type zeolite membranes for high selectivity and high flux for hydrogen.
    Tang Z; Dong J; Nenoff TM
    Langmuir; 2009 May; 25(9):4848-52. PubMed ID: 19397346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication and Evaluation of Trimethylmethoxysilane (TMMOS)-Derived Membranes for Gas Separation.
    Mise Y; Ahn SJ; Takagaki A; Kikuchi R; Oyama ST
    Membranes (Basel); 2019 Sep; 9(10):. PubMed ID: 31547032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microporous niobia-silica membrane with very low CO2 permeability.
    Boffa V; ten Elshof JE; Petukhov AV; Blank DH
    ChemSusChem; 2008; 1(5):437-43. PubMed ID: 18702139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and Evaluation of Nanocomposite Sodalite/α-Al
    Eterigho-Ikelegbe O; Bada SO; Daramola MO
    Membranes (Basel); 2020 Oct; 10(11):. PubMed ID: 33137909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Competitive adsorption-driven separation of water/methanol mixtures using hydrogen as a third competitor.
    Lee DW; Yu CY; Lee KH
    J Colloid Interface Sci; 2009 Dec; 340(1):62-6. PubMed ID: 19772967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gas Separation Silica Membranes Prepared by Chemical Vapor Deposition of Methyl-Substituted Silanes.
    Kato H; Lundin SB; Ahn SJ; Takagaki A; Kikuchi R; Oyama ST
    Membranes (Basel); 2019 Nov; 9(11):. PubMed ID: 31684187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scalable Polymeric Few-Nanometer Organosilica Membranes with Hydrothermal Stability for Selective Hydrogen Separation.
    Zhu L; Huang L; Venna SR; Blevins AK; Ding Y; Hopkinson DP; Swihart MT; Lin H
    ACS Nano; 2021 Jul; 15(7):12119-12128. PubMed ID: 34254506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mercaptoundecanoic acid capped palladium nanoparticles in a SAPO 34 membrane: a solution for enhancement of H₂/CO₂ separation efficiency.
    Das JK; Das N
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):20717-28. PubMed ID: 25353317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microstructure and Hydrothermal Stability of Microporous Niobia-Silica Membranes: Effect of Niobium Doping Contents.
    Xia J; Yang J; Zhang H; Guo Y; Zhang R
    Membranes (Basel); 2022 May; 12(5):. PubMed ID: 35629853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tailor-Made Modification of Commercial Ceramic Membranes for Environmental and Energy-Oriented Gas Separation Applications.
    Grekou TK; Koutsonikolas DE; Karagiannakis G; Kikkinides ES
    Membranes (Basel); 2022 Mar; 12(3):. PubMed ID: 35323782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanogradient Hydrophilic/Hydrophobic Organosilica Membranes Developed by Atmospheric-Pressure Plasma to Enhance Pervaporation Performance.
    Aoyama S; Nagasawa H; Kanezashi M; Tsuru T
    ACS Nano; 2022 Jul; 16(7):10302-10313. PubMed ID: 35728269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stable, Temperature-Dependent Gas Mixture Permeation and Separation through Suspended Nanoporous Single-Layer Graphene Membranes.
    Yuan Z; Benck JD; Eatmon Y; Blankschtein D; Strano MS
    Nano Lett; 2018 Aug; 18(8):5057-5069. PubMed ID: 30044919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen Selective SiCH Inorganic-Organic Hybrid/γ-Al
    Kubo M; Mano R; Kojima M; Naniwa K; Daiko Y; Honda S; Ionescu E; Bernard S; Riedel R; Iwamoto Y
    Membranes (Basel); 2020 Sep; 10(10):. PubMed ID: 32992911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of Silica Membranes by Chemical Vapor Deposition Using a Dimethyldimethoxysilane Precursor.
    Oyama ST; Aono H; Takagaki A; Sugawara T; Kikuchi R
    Membranes (Basel); 2020 Mar; 10(3):. PubMed ID: 32235698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.