BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

507 related articles for article (PubMed ID: 18614348)

  • 21. Carbon monoxide formation and emissions during waste incineration in a grate-circulating fluidized bed incinerator.
    Yanguo Zhang ; Qinghai Li ; Aihong Meng ; Changhe Chen
    Waste Manag Res; 2011 Mar; 29(3):294-308. PubMed ID: 20421246
    [TBL] [Abstract][Full Text] [Related]  

  • 22. HCl emission characteristics and BP neural networks prediction in MSW/coal co-fired fluidized beds.
    Chi Y; Wen JM; Zhang DP; Yan JH; Ni MJ; Cen KF
    J Environ Sci (China); 2005; 17(4):699-704. PubMed ID: 16158608
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Combustion and NO emission of high nitrogen content biomass in a pilot-scale vortexing fluidized bed combustor.
    Qian FP; Chyang CS; Huang KS; Tso J
    Bioresour Technol; 2011 Jan; 102(2):1892-8. PubMed ID: 20800476
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The distribution of heavy metals during fluidized bed combustion of sludge (FBSC).
    Van de Velden M; Dewil R; Baeyens J; Josson L; Lanssens P
    J Hazard Mater; 2008 Feb; 151(1):96-102. PubMed ID: 17601665
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Experimental study on rice husk combustion in a vortexing fluidized-bed with flue gas recirculation (FGR).
    Duan F; Chyang CS; Lin CW; Tso J
    Bioresour Technol; 2013 Apr; 134():204-11. PubMed ID: 23506977
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of the overfire air ratio on the NO(x) emission and combustion characteristics of a down-fired 300-MW(e) utility boiler.
    Ren F; Li Z; Chen Z; Fan S; Liu G
    Environ Sci Technol; 2010 Aug; 44(16):6510-6. PubMed ID: 20666359
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Emission characteristics of granulated fuel produced from sewage sludge and coal slime.
    Wzorek M; Kozioł M; Scierski W
    J Air Waste Manag Assoc; 2010 Dec; 60(12):1487-93. PubMed ID: 21243903
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Combustion of an oil palm residue with elevated potassium content in a fluidized-bed combustor using alternative bed materials for preventing bed agglomeration.
    Ninduangdee P; Kuprianov VI
    Bioresour Technol; 2015 Apr; 182():272-281. PubMed ID: 25704101
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Investigation of ash deposition in a pilot-scale fluidized bed combustor co-firing biomass with lignite.
    Gogebakan Z; Gogebakan Y; Selçuk N; Selçuk E
    Bioresour Technol; 2009 Jan; 100(2):1033-6. PubMed ID: 18762413
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nitrogen evolution during the co-combustion of hydrothermally treated municipal solid waste and coal in a bubbling fluidized bed.
    Lu L; Jin Y; Liu H; Ma X; Yoshikawa K
    Waste Manag; 2014 Jan; 34(1):79-85. PubMed ID: 24120458
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mercury emissions during cofiring of sub-bituminous coal and biomass (chicken waste, wood, coffee residue, and tobacco stalk) in a laboratory-scale fluidized bed combustor.
    Cao Y; Zhou H; Fan J; Zhao H; Zhou T; Hack P; Chan CC; Liou JC; Pan WP
    Environ Sci Technol; 2008 Dec; 42(24):9378-84. PubMed ID: 19174919
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermal valorization of footwear leather wastes in bubbling fluidized bed combustion.
    Bahillo A; Armesto L; Cabanillas A; Otero J
    Waste Manag; 2004; 24(9):935-44. PubMed ID: 15504671
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Emissions from small-scale energy production using co-combustion of biofuel and the dry fraction of household waste.
    Hedman B; Burvall J; Nilsson C; Marklund S
    Waste Manag; 2005; 25(3):311-21. PubMed ID: 15823746
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mercury speciation and emissions from coal combustion in Guiyang, Southwest China.
    Tang S; Feng X; Qiu J; Yin G; Yang Z
    Environ Res; 2007 Oct; 105(2):175-82. PubMed ID: 17517388
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Combustion of peanut and tamarind shells in a conical fluidized-bed combustor: a comparative study.
    Kuprianov VI; Arromdee P
    Bioresour Technol; 2013 Jul; 140():199-210. PubMed ID: 23693147
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization, leachability and valorization through combustion of residual chars from gasification of coals with pine.
    Galhetas M; Lopes H; Freire M; Abelha P; Pinto F; Gulyurtlu I
    Waste Manag; 2012 Apr; 32(4):769-79. PubMed ID: 21963044
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Co-firing of eucalyptus bark and rubberwood sawdust in a swirling fluidized-bed combustor using an axial flow swirler.
    Chakritthakul S; Kuprianov VI
    Bioresour Technol; 2011 Sep; 102(17):8268-78. PubMed ID: 21729824
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Co-firing coal with rice husk and bamboo and the impact on particulate matters and associated polycyclic aromatic hydrocarbon emissions.
    Chao CY; Kwong PC; Wang JH; Cheung CW; Kendall G
    Bioresour Technol; 2008 Jan; 99(1):83-93. PubMed ID: 17257831
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Co-gasification of solid waste and lignite - a case study for Western Macedonia.
    Koukouzas N; Katsiadakis A; Karlopoulos E; Kakaras E
    Waste Manag; 2008; 28(7):1263-75. PubMed ID: 17631995
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The reuse of spent mushroom compost and coal tailings for energy recovery: comparison of thermal treatment technologies.
    Finney KN; Ryu C; Sharifi VN; Swithenbank J
    Bioresour Technol; 2009 Jan; 100(1):310-5. PubMed ID: 18625549
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.