These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 18614754)

  • 1. The representation of amplitude modulations in the mammalian auditory midbrain.
    Krebs B; Lesica NA; Grothe B
    J Neurophysiol; 2008 Sep; 100(3):1602-9. PubMed ID: 18614754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pulse rise time but not duty cycle affects the temporal selectivity of neurons in the anuran midbrain that prefer slow AM rates.
    Edwards CJ; Alder TB; Rose GJ
    J Neurophysiol; 2005 Mar; 93(3):1336-41. PubMed ID: 15738274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiparametric corticofugal modulation of collicular duration-tuned neurons: modulation in the amplitude domain.
    Ma X; Suga N
    J Neurophysiol; 2007 May; 97(5):3722-30. PubMed ID: 17376844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dependency of the interaural phase difference sensitivities of inferior collicular neurons on a preceding tone and its implications in neural population coding.
    Furukawa S; Maki K; Kashino M; Riquimaroux H
    J Neurophysiol; 2005 Jun; 93(6):3313-26. PubMed ID: 15703221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Representation of echo roughness and its relationship to amplitude-modulation processing in the bat auditory midbrain.
    Borina F; Firzlaff U; Schuller G; Wiegrebe L
    Eur J Neurosci; 2008 May; 27(10):2724-32. PubMed ID: 18547252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic coupling of excitatory and inhibitory responses in the medial nucleus of the trapezoid body.
    Tolnai S; Englitz B; Kopp-Scheinpflug C; Dehmel S; Jost J; Rübsamen R
    Eur J Neurosci; 2008 Jun; 27(12):3191-204. PubMed ID: 18598262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning to interaural time difference and frequency differs between the auditory arcopallium and the external nucleus of the inferior colliculus.
    Vonderschen K; Wagner H
    J Neurophysiol; 2009 May; 101(5):2348-61. PubMed ID: 19261709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic amplitude coding in the auditory cortex of awake rhesus macaques.
    Malone BJ; Scott BH; Semple MN
    J Neurophysiol; 2007 Sep; 98(3):1451-74. PubMed ID: 17615123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial organization of receptive fields in the auditory midbrain of awake mouse.
    Portfors CV; Mayko ZM; Jonson K; Cha GF; Roberts PD
    Neuroscience; 2011 Oct; 193():429-39. PubMed ID: 21807069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of bandwidths in the inferior colliculus and the auditory nerve. I. Measurement using a spectrally manipulated stimulus.
    Mc Laughlin M; Van de Sande B; van der Heijden M; Joris PX
    J Neurophysiol; 2007 Nov; 98(5):2566-79. PubMed ID: 17881484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracellular responses of neurons in the mouse inferior colliculus to sinusoidal amplitude-modulated tones.
    Geis HR; Borst JG
    J Neurophysiol; 2009 Apr; 101(4):2002-16. PubMed ID: 19193772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectral integration in the inferior colliculus of the CBA/CaJ mouse.
    Portfors CV; Felix RA
    Neuroscience; 2005; 136(4):1159-70. PubMed ID: 16216422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Responses of frog midbrain auditory center neurons to exposure to amplitude-modulated tones].
    Bibikov NG; Gorodetskaia ON
    Neirofiziologiia; 1980; 12(3):264-71. PubMed ID: 7402411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Echo frequency selectivity of duration-tuned inferior collicular neurons of the big brown bat, Eptesicus fuscus, determined with pulse-echo pairs.
    Wu CH; Jen PH
    Neuroscience; 2008 Oct; 156(4):1028-38. PubMed ID: 18804149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitive response to low-frequency cochlear distortion products in the auditory midbrain.
    Abel C; Kössl M
    J Neurophysiol; 2009 Mar; 101(3):1560-74. PubMed ID: 19036870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MEG evidence that the central auditory system simultaneously encodes multiple temporal cues.
    Simpson MI; Barnes GR; Johnson SR; Hillebrand A; Singh KD; Green GG
    Eur J Neurosci; 2009 Sep; 30(6):1183-91. PubMed ID: 19723287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural sensitivity to periodicity in the inferior colliculus: evidence for the role of cochlear distortions.
    McAlpine D
    J Neurophysiol; 2004 Sep; 92(3):1295-311. PubMed ID: 15128750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Basic maps in the auditory midbrain.
    Herrnberger B; Kempf S; Ehret G
    Biol Cybern; 2002 Oct; 87(4):231-40. PubMed ID: 12386739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First spike latency and spike count as functions of tone amplitude and frequency in the inferior colliculus of mice.
    Tan X; Wang X; Yang W; Xiao Z
    Hear Res; 2008 Jan; 235(1-2):90-104. PubMed ID: 18037595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential temporal coding of rhythmically diverse acoustic signals by a single interneuron.
    Marsat G; Pollack GS
    J Neurophysiol; 2004 Aug; 92(2):939-48. PubMed ID: 15044517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.