BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 18614968)

  • 1. Myocardial hypertrophy and the maturation of fatty acid oxidation in the newborn human heart.
    Yatscoff MA; Jaswal JS; Grant MR; Greenwood R; Lukat T; Beker DL; Rebeyka IM; Lopaschuk GD
    Pediatr Res; 2008 Dec; 64(6):643-7. PubMed ID: 18614968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Malonyl CoA control of fatty acid oxidation in the newborn heart in response to increased fatty acid supply.
    Onay-Besikci A; Sambandam N
    Can J Physiol Pharmacol; 2006 Nov; 84(11):1215-22. PubMed ID: 17218986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AMP-activated protein kinase and coordination of hepatic fatty acid metabolism of starved/carbohydrate-refed rats.
    Assifi MM; Suchankova G; Constant S; Prentki M; Saha AK; Ruderman NB
    Am J Physiol Endocrinol Metab; 2005 Nov; 289(5):E794-800. PubMed ID: 15956049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LKB1 and the regulation of malonyl-CoA and fatty acid oxidation in muscle.
    Thomson DM; Brown JD; Fillmore N; Condon BM; Kim HJ; Barrow JR; Winder WW
    Am J Physiol Endocrinol Metab; 2007 Dec; 293(6):E1572-9. PubMed ID: 17925454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Malonyl coenzyme a decarboxylase inhibition protects the ischemic heart by inhibiting fatty acid oxidation and stimulating glucose oxidation.
    Dyck JR; Cheng JF; Stanley WC; Barr R; Chandler MP; Brown S; Wallace D; Arrhenius T; Harmon C; Yang G; Nadzan AM; Lopaschuk GD
    Circ Res; 2004 May; 94(9):e78-84. PubMed ID: 15105298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AMPK-dependent inhibitory phosphorylation of ACC is not essential for maintaining myocardial fatty acid oxidation.
    Zordoky BN; Nagendran J; Pulinilkunnil T; Kienesberger PC; Masson G; Waller TJ; Kemp BE; Steinberg GR; Dyck JR
    Circ Res; 2014 Aug; 115(5):518-24. PubMed ID: 25001074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased malonyl-CoA levels in muscle from obese and type 2 diabetic subjects lead to decreased fatty acid oxidation and increased lipogenesis; thiazolidinedione treatment reverses these defects.
    Bandyopadhyay GK; Yu JG; Ofrecio J; Olefsky JM
    Diabetes; 2006 Aug; 55(8):2277-85. PubMed ID: 16873691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AMP-activated protein kinase regulation of fatty acid oxidation in the ischaemic heart.
    Hopkins TA; Dyck JR; Lopaschuk GD
    Biochem Soc Trans; 2003 Feb; 31(Pt 1):207-12. PubMed ID: 12546686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of malonyl-CoA in heart disease and the hypothalamic control of obesity.
    Folmes CD; Lopaschuk GD
    Cardiovasc Res; 2007 Jan; 73(2):278-87. PubMed ID: 17126822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased cardiac fatty acid uptake with dobutamine infusion in swine is accompanied by a decrease in malonyl CoA levels.
    Hall JL; Lopaschuk GD; Barr A; Bringas J; Pizzurro RD; Stanley WC
    Cardiovasc Res; 1996 Nov; 32(5):879-85. PubMed ID: 8944819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of food intake and energy expenditure by hypothalamic malonyl-CoA.
    Lane MD; Wolfgang M; Cha SH; Dai Y
    Int J Obes (Lond); 2008 Sep; 32 Suppl 4():S49-54. PubMed ID: 18719599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Malonyl CoA control of fatty acid oxidation in the ischemic heart.
    Dyck JR; Lopaschuk GD
    J Mol Cell Cardiol; 2002 Sep; 34(9):1099-109. PubMed ID: 12392882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of fatty acid oxidation of the heart by MCD and ACC during contractile stimulation.
    Goodwin GW; Taegtmeyer H
    Am J Physiol; 1999 Oct; 277(4):E772-7. PubMed ID: 10516138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of cardiac malonyl-CoA content and fatty acid oxidation during increased cardiac power.
    King KL; Okere IC; Sharma N; Dyck JR; Reszko AE; McElfresh TA; Kerner J; Chandler MP; Lopaschuk GD; Stanley WC
    Am J Physiol Heart Circ Physiol; 2005 Sep; 289(3):H1033-7. PubMed ID: 15821035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of cardiac malonyl-CoA decarboxylase and its putative role in regulating fatty acid oxidation.
    Dyck JR; Barr AJ; Barr RL; Kolattukudy PE; Lopaschuk GD
    Am J Physiol; 1998 Dec; 275(6):H2122-9. PubMed ID: 9843812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coordinate regulation of malonyl-CoA decarboxylase, sn-glycerol-3-phosphate acyltransferase, and acetyl-CoA carboxylase by AMP-activated protein kinase in rat tissues in response to exercise.
    Park H; Kaushik VK; Constant S; Prentki M; Przybytkowski E; Ruderman NB; Saha AK
    J Biol Chem; 2002 Sep; 277(36):32571-7. PubMed ID: 12065578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leptin activates cardiac fatty acid oxidation independent of changes in the AMP-activated protein kinase-acetyl-CoA carboxylase-malonyl-CoA axis.
    Atkinson LL; Fischer MA; Lopaschuk GD
    J Biol Chem; 2002 Aug; 277(33):29424-30. PubMed ID: 12058043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Upregulation of 5'-AMP-activated protein kinase is responsible for the increase in myocardial fatty acid oxidation rates following birth in the newborn rabbit.
    Makinde AO; Gamble J; Lopaschuk GD
    Circ Res; 1997 Apr; 80(4):482-9. PubMed ID: 9118478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acetyl-CoA carboxylase involvement in the rapid maturation of fatty acid oxidation in the newborn rabbit heart.
    Lopaschuk GD; Witters LA; Itoi T; Barr R; Barr A
    J Biol Chem; 1994 Oct; 269(41):25871-8. PubMed ID: 7929291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exercise training decreases the concentration of malonyl-CoA and increases the expression and activity of malonyl-CoA decarboxylase in human muscle.
    Kuhl JE; Ruderman NB; Musi N; Goodyear LJ; Patti ME; Crunkhorn S; Dronamraju D; Thorell A; Nygren J; Ljungkvist O; Degerblad M; Stahle A; Brismar TB; Andersen KL; Saha AK; Efendic S; Bavenholm PN
    Am J Physiol Endocrinol Metab; 2006 Jun; 290(6):E1296-303. PubMed ID: 16434556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.