These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
315 related articles for article (PubMed ID: 18615211)
1. Cyano-bridged coordination polymer nanoparticles with high nuclear relaxivity: toward new contrast agents for MRI. Guari Y; Larionova J; Corti M; Lascialfari A; Marinone M; Poletti G; Molvinger K; Guérin C Dalton Trans; 2008 Jul; (28):3658-60. PubMed ID: 18615211 [TBL] [Abstract][Full Text] [Related]
2. Gold nanoparticles functionalized with gadolinium chelates as high-relaxivity MRI contrast agents. Moriggi L; Cannizzo C; Dumas E; Mayer CR; Ulianov A; Helm L J Am Chem Soc; 2009 Aug; 131(31):10828-9. PubMed ID: 19722661 [TBL] [Abstract][Full Text] [Related]
3. Strategies for increasing relaxivity of gold nanoparticle based MRI contrast agents. Warsi MF; Chechik V Phys Chem Chem Phys; 2011 May; 13(20):9812-7. PubMed ID: 21503280 [TBL] [Abstract][Full Text] [Related]
4. Tuning the magnetic resonance imaging properties of positive contrast agent nanoparticles by surface modification with RAFT polymers. Rowe MD; Chang CC; Thamm DH; Kraft SL; Harmon JF; Vogt AP; Sumerlin BS; Boyes SG Langmuir; 2009 Aug; 25(16):9487-99. PubMed ID: 19422256 [TBL] [Abstract][Full Text] [Related]
5. Gold nanoparticles functionalised with stable, fast water exchanging Gd3+ chelates as high relaxivity contrast agents for MRI. Ferreira MF; Mousavi B; Ferreira PM; Martins CI; Helm L; Martins JA; Geraldes CF Dalton Trans; 2012 May; 41(18):5472-5. PubMed ID: 22467054 [TBL] [Abstract][Full Text] [Related]
6. Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging. Alric C; Taleb J; Le Duc G; Mandon C; Billotey C; Le Meur-Herland A; Brochard T; Vocanson F; Janier M; Perriat P; Roux S; Tillement O J Am Chem Soc; 2008 May; 130(18):5908-15. PubMed ID: 18407638 [TBL] [Abstract][Full Text] [Related]
7. Synthesis and characterization of PEGylated Gd2O3 nanoparticles for MRI contrast enhancement. Ahrén M; Selegård L; Klasson A; Söderlind F; Abrikossova N; Skoglund C; Bengtsson T; Engström M; Käll PO; Uvdal K Langmuir; 2010 Apr; 26(8):5753-62. PubMed ID: 20334417 [TBL] [Abstract][Full Text] [Related]
8. Optimization of gadolinium-based MRI contrast agents for high magnetic-field applications. Helm L Future Med Chem; 2010 Mar; 2(3):385-96. PubMed ID: 21426173 [TBL] [Abstract][Full Text] [Related]
9. A novel degradable polymeric carrier for selective release and imaging of magnetic nanoparticles. Chen D; Li N; Gu H; Xia X; Xu Q; Ge J; Lu J; Li Y Chem Commun (Camb); 2010 Sep; 46(36):6708-10. PubMed ID: 20714558 [TBL] [Abstract][Full Text] [Related]
11. Paramagnetic ultrasmall gadolinium oxide nanoparticles as advanced T1 MRI contrast agent: account for large longitudinal relaxivity, optimal particle diameter, and in vivo T1 MR images. Park JY; Baek MJ; Choi ES; Woo S; Kim JH; Kim TJ; Jung JC; Chae KS; Chang Y; Lee GH ACS Nano; 2009 Nov; 3(11):3663-9. PubMed ID: 19835389 [TBL] [Abstract][Full Text] [Related]
12. Pushing the sensitivity envelope of lanthanide-based magnetic resonance imaging (MRI) contrast agents for molecular imaging applications. Aime S; Castelli DD; Crich SG; Gianolio E; Terreno E Acc Chem Res; 2009 Jul; 42(7):822-31. PubMed ID: 19534516 [TBL] [Abstract][Full Text] [Related]
13. A benzene-core trinuclear GdIII complex: towards the optimization of relaxivity for MRI contrast agent applications at high magnetic field. Livramento JB; Helm L; Sour A; O'Neil C; Merbach AE; Tóth E Dalton Trans; 2008 Mar; (9):1195-202. PubMed ID: 18283380 [TBL] [Abstract][Full Text] [Related]
14. MRI relaxation properties of water-soluble apoferritin-encapsulated gadolinium oxide-hydroxide nanoparticles. Sánchez P; Valero E; Gálvez N; Domínguez-Vera JM; Marinone M; Poletti G; Corti M; Lascialfari A Dalton Trans; 2009 Feb; (5):800-4. PubMed ID: 19156273 [TBL] [Abstract][Full Text] [Related]
15. Gd-functionalised Au nanoparticles as targeted contrast agents in MRI: relaxivity enhancement by polyelectrolyte coating. Warsi MF; Adams RW; Duckett SB; Chechik V Chem Commun (Camb); 2010 Jan; 46(3):451-3. PubMed ID: 20066322 [TBL] [Abstract][Full Text] [Related]
16. Lanthanide chelates of (bis)-hydroxymethyl-substituted DTTA with potential application as contrast agents in magnetic resonance imaging. Silvério S; Torres S; Martins AF; Martins JA; André JP; Helm L; Prata MI; Santos AC; Geraldes CF Dalton Trans; 2009 Jun; (24):4656-70. PubMed ID: 19513474 [TBL] [Abstract][Full Text] [Related]
17. Enhancement of relaxivity rates of Gd-DTPA complexes by intercalation into layered double hydroxide nanoparticles. Xu ZP; Kurniawan ND; Bartlett PF; Lu GQ Chemistry; 2007; 13(10):2824-30. PubMed ID: 17186555 [TBL] [Abstract][Full Text] [Related]
18. Comparison of a tartaric acid derived polymeric MRI contrast agent to a small molecule model chelate. Lucas RL; Benjamin M; Reineke TM Bioconjug Chem; 2008 Jan; 19(1):24-7. PubMed ID: 18092744 [TBL] [Abstract][Full Text] [Related]
19. Tris(pyrone) chelates of Gd(III) as high solubility MRI-CA. Puerta DT; Botta M; Jocher CJ; Werner EJ; Avedano S; Raymond KN; Cohen SM J Am Chem Soc; 2006 Feb; 128(7):2222-3. PubMed ID: 16478170 [TBL] [Abstract][Full Text] [Related]
20. In vitro characterization of the Gd complex of [2,6-pyridinediylbis(methylene nitrilo)] tetraacetic acid (PMN-tetraacetic acid) and of its Eu analogue, suitable bimodal contrast agents for MRI and optical imaging. Laurent S; Vander Elst L; Wautier M; Galaup C; Muller RN; Picard C Bioorg Med Chem Lett; 2007 Nov; 17(22):6230-3. PubMed ID: 17889530 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]