These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 18615346)
1. Effects of dextran on proliferation and osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells. Li D; Dai K; Tang T Cytotherapy; 2008; 10(6):587-96. PubMed ID: 18615346 [TBL] [Abstract][Full Text] [Related]
2. Self-assembled extracellular macromolecular matrices and their different osteogenic potential with preosteoblasts and rat bone marrow mesenchymal stromal cells. Bae SE; Bhang SH; Kim BS; Park K Biomacromolecules; 2012 Sep; 13(9):2811-20. PubMed ID: 22813212 [TBL] [Abstract][Full Text] [Related]
3. Glycosaminoglycans enhance osteoblast differentiation of bone marrow derived human mesenchymal stem cells. Mathews S; Mathew SA; Gupta PK; Bhonde R; Totey S J Tissue Eng Regen Med; 2014 Feb; 8(2):143-52. PubMed ID: 22499338 [TBL] [Abstract][Full Text] [Related]
4. Biomimetic collagen scaffolds for human bone cell growth and differentiation. Yang XB; Bhatnagar RS; Li S; Oreffo RO Tissue Eng; 2004; 10(7-8):1148-59. PubMed ID: 15363171 [TBL] [Abstract][Full Text] [Related]
5. Rapamycin as an inhibitor of osteogenic differentiation in bone marrow-derived mesenchymal stem cells. Isomoto S; Hattori K; Ohgushi H; Nakajima H; Tanaka Y; Takakura Y J Orthop Sci; 2007 Jan; 12(1):83-8. PubMed ID: 17260122 [TBL] [Abstract][Full Text] [Related]
6. Effects of flow shear stress and mass transport on the construction of a large-scale tissue-engineered bone in a perfusion bioreactor. Li D; Tang T; Lu J; Dai K Tissue Eng Part A; 2009 Oct; 15(10):2773-83. PubMed ID: 19226211 [TBL] [Abstract][Full Text] [Related]
7. The pH in the microenvironment of human mesenchymal stem cells is a critical factor for optimal osteogenesis in tissue-engineered constructs. Monfoulet LE; Becquart P; Marchat D; Vandamme K; Bourguignon M; Pacard E; Viateau V; Petite H; Logeart-Avramoglou D Tissue Eng Part A; 2014 Jul; 20(13-14):1827-40. PubMed ID: 24447025 [TBL] [Abstract][Full Text] [Related]
8. Umbilical cord Wharton's Jelly: a new potential cell source of mesenchymal stromal cells for bone tissue engineering. Hou T; Xu J; Wu X; Xie Z; Luo F; Zhang Z; Zeng L Tissue Eng Part A; 2009 Sep; 15(9):2325-34. PubMed ID: 19231937 [TBL] [Abstract][Full Text] [Related]
9. Relation between in vitro and in vivo osteogenic potential of cultured human bone marrow stromal cells. Mendes SC; Tibbe JM; Veenhof M; Both S; Oner FC; van Blitterswijk CA; de Bruijn JD J Mater Sci Mater Med; 2004 Oct; 15(10):1123-8. PubMed ID: 15516873 [TBL] [Abstract][Full Text] [Related]
10. Human serine protease HTRA1 positively regulates osteogenesis of human bone marrow-derived mesenchymal stem cells and mineralization of differentiating bone-forming cells through the modulation of extracellular matrix protein. Tiaden AN; Breiden M; Mirsaidi A; Weber FA; Bahrenberg G; Glanz S; Cinelli P; Ehrmann M; Richards PJ Stem Cells; 2012 Oct; 30(10):2271-82. PubMed ID: 22865667 [TBL] [Abstract][Full Text] [Related]
11. Effect of boron on osteogenic differentiation of human bone marrow stromal cells. Ying X; Cheng S; Wang W; Lin Z; Chen Q; Zhang W; Kou D; Shen Y; Cheng X; Rompis FA; Peng L; Zhu Lu C Biol Trace Elem Res; 2011 Dec; 144(1-3):306-15. PubMed ID: 21625915 [TBL] [Abstract][Full Text] [Related]
12. [Effect of nerve growth factor on osteogenic potential of type 2 diabetic mice bone marrow stromal cell Cui GS; Zeng JY; Zhang J; Lu R Zhonghua Kou Qiang Yi Xue Za Zhi; 2018 Feb; 53(2):97-102. PubMed ID: 29429227 [No Abstract] [Full Text] [Related]
13. Osteogenic performance of donor-matched human adipose and bone marrow mesenchymal cells under dynamic culture. Wu W; Le AV; Mendez JJ; Chang J; Niklason LE; Steinbacher DM Tissue Eng Part A; 2015 May; 21(9-10):1621-32. PubMed ID: 25668104 [TBL] [Abstract][Full Text] [Related]
14. Caffeine regulates osteogenic differentiation and mineralization of primary adipose-derived stem cells and a bone marrow stromal cell line. Su SJ; Chang KL; Su SH; Yeh YT; Shyu HW; Chen KM Int J Food Sci Nutr; 2013 Jun; 64(4):429-36. PubMed ID: 23301724 [TBL] [Abstract][Full Text] [Related]
15. Flow velocity-driven differentiation of human mesenchymal stromal cells in silk fibroin scaffolds: A combined experimental and computational approach. Vetsch JR; Betts DC; Müller R; Hofmann S PLoS One; 2017; 12(7):e0180781. PubMed ID: 28686698 [TBL] [Abstract][Full Text] [Related]
16. Osteogenic differentiation of rat bone marrow stromal cells cultured on Arg-Gly-Asp modified hydrogels without dexamethasone and beta-glycerol phosphate. Shin H; Temenoff JS; Bowden GC; Zygourakis K; Farach-Carson MC; Yaszemski MJ; Mikos AG Biomaterials; 2005 Jun; 26(17):3645-54. PubMed ID: 15621255 [TBL] [Abstract][Full Text] [Related]
17. Noggin suppression decreases BMP-2-induced osteogenesis of human bone marrow-derived mesenchymal stem cells in vitro. Chen C; Uludağ H; Wang Z; Jiang H J Cell Biochem; 2012 Dec; 113(12):3672-80. PubMed ID: 22740073 [TBL] [Abstract][Full Text] [Related]
18. Optimizing the osteogenic differentiation of human mesenchymal stromal cells by the synergistic action of growth factors. Açil Y; Ghoniem AA; Wiltfang J; Gierloff M J Craniomaxillofac Surg; 2014 Dec; 42(8):2002-9. PubMed ID: 25458345 [TBL] [Abstract][Full Text] [Related]
19. Effects of rifampicin on osteogenic differentiation and proliferation of human mesenchymal stem cells in the bone marrow. Zhang Z; Wang X; Luo F; Yang H; Hou T; Zhou Q; Dai F; He Q; Xu J Genet Mol Res; 2014 Aug; 13(3):6398-410. PubMed ID: 25158258 [TBL] [Abstract][Full Text] [Related]
20. Osteogenic response of bone marrow stromal cells from normal and ovariectomized rats treated with a low dose of basic fibroblast growth factor. Varkey M; Kucharski C; Doschak MR; Winn SR; Brochmann EJ; Murray S; Matyas JR; Zernicke RF; Uludag H Tissue Eng; 2007 Apr; 13(4):809-17. PubMed ID: 17394387 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]