These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
329 related articles for article (PubMed ID: 186154)
1. The thiol-oxidizing agent diamide increases transmitter release by decreasing calcium requirements for neuromuscular transmission in the frog. Carlen PL; Kosower EM; Werman R Brain Res; 1976 Nov; 117(2):257-76. PubMed ID: 186154 [TBL] [Abstract][Full Text] [Related]
2. Diamide acts intracellularly to enhance transmitter release: the differential permeation of diamide, DIP, DIP+1 and DIP+2 across the nerve terminal membrane. Carlen PL; Kosower EM; Werman R Brain Res; 1976 Nov; 117(2):277-85. PubMed ID: 990916 [TBL] [Abstract][Full Text] [Related]
3. Changes in miniature endplate potential frequency during repetitive nerve stimulation in the presence of Ca2+, Ba2+, and Sr2+ at the frog neuromuscular junction. Zengel JE; Magleby KL J Gen Physiol; 1981 May; 77(5):503-29. PubMed ID: 6262429 [TBL] [Abstract][Full Text] [Related]
4. Effects of a thioreactive agent, diamide, on neuromuscular transmission in lobster. Colton CA; Colton JS Am J Physiol; 1982 Jan; 242(1):C59-64. PubMed ID: 6277199 [TBL] [Abstract][Full Text] [Related]
5. Changes in MEPP frequency during depression of evoked release at the frog neuromuscular junction. Zengel JE; Sosa MA J Physiol; 1994 Jun; 477(Pt 2):267-77. PubMed ID: 7932218 [TBL] [Abstract][Full Text] [Related]
6. Calcium-independent increase of transmitter release at frog end-plate by trinitrobenzene sulphonic acid. Kijima H; Tanabe N J Physiol; 1988 Sep; 403():135-49. PubMed ID: 3150982 [TBL] [Abstract][Full Text] [Related]
7. Methylmercury-induced depression of neuromuscular transmission in the rat. Atchison WD; Narahashi T Neurotoxicology; 1982 Nov; 3(3):37-50. PubMed ID: 6298679 [TBL] [Abstract][Full Text] [Related]
8. Effects of lead on neuromuscular transmission in the frog. Manalis RS; Cooper GP; Pomeroy SL Brain Res; 1984 Feb; 294(1):95-109. PubMed ID: 6320979 [TBL] [Abstract][Full Text] [Related]
9. Elevated tonicity increases miniature end-plate potential frequency during tetanic stimulation at frog neuromuscular junction in low calcium and in manganese saline solutions. Narita K; Kita H; van der Kloot W Brain Res; 1983 Dec; 289(1-2):79-85. PubMed ID: 6318905 [TBL] [Abstract][Full Text] [Related]
10. Time course and magnitude of effects of changes in tonicity on acetylcholine release at frog neuromuscular junction. Kita H; van der Kloot W J Neurophysiol; 1977 Mar; 40(2):212-24. PubMed ID: 300428 [TBL] [Abstract][Full Text] [Related]
11. Dependence of spontaneous release at frog junctions on synaptic strength, external calcium and terminal length. Grinnell AD; Pawson PA J Physiol; 1989 Nov; 418():397-410. PubMed ID: 2576068 [TBL] [Abstract][Full Text] [Related]
12. Maitotoxin activates quantal transmitter release at the neuromuscular junction: evidence for elevated intraterminal Ca2+ in the motor nerve terminal. Kim YI; Login IS; Yasumoto T Brain Res; 1985 Nov; 346(2):357-62. PubMed ID: 2996708 [TBL] [Abstract][Full Text] [Related]
13. The upregulation of acetylcholine release at endplates of alpha-bungarotoxin-treated rats: its dependency on calcium. Plomp JJ; van Kempen GT; Molenaar PC J Physiol; 1994 Jul; 478 ( Pt 1)(Pt 1):125-36. PubMed ID: 7965828 [TBL] [Abstract][Full Text] [Related]
14. Effect of alteration of nerve terminal Ca2+ regulation on increased spontaneous quantal release of acetylcholine by methyl mercury. Levesque PC; Atchison WD Toxicol Appl Pharmacol; 1988 Jun; 94(1):55-65. PubMed ID: 3376114 [TBL] [Abstract][Full Text] [Related]
15. Effects of temperature on the decline in miniature end-plate potential frequency following a tetanus. Kita H; Narita K; van der Kloot W Brain Res; 1980 May; 190(2):435-45. PubMed ID: 7370799 [TBL] [Abstract][Full Text] [Related]
16. Effects of Mg2+ on the stimulation-induced changes in transmitter release at the frog neuromuscular junction. Tanabe N; Morota A; Kijima H Zoolog Sci; 1995 Jun; 12(3):265-70. PubMed ID: 7580810 [TBL] [Abstract][Full Text] [Related]
17. A new type of transmitter release at the neuromuscular junction. Thesleff S; Molgó J Neuroscience; 1983 May; 9(1):1-8. PubMed ID: 6308500 [TBL] [Abstract][Full Text] [Related]
18. Tetanic stimulation increases the frequency of miniature end-plate potentials at the frog neuromuscular junction in Mn2+-, CO2+-, and Ni2+-saline solutions. Kita H; Narita K; Van der Kloot W Brain Res; 1981 Jan; 205(1):111-21. PubMed ID: 6258705 [TBL] [Abstract][Full Text] [Related]
19. Modulation of Ca(2+)-dependent and Ca(2+)-independent miniature endplate potentials by phorbol ester and adenosine in frog. Searl TJ; Silinsky EM Br J Pharmacol; 2005 Aug; 145(7):954-62. PubMed ID: 15880138 [TBL] [Abstract][Full Text] [Related]
20. Mechanism of action of lead on neuromuscular junctions. Atchison WD; Narahashi T Neurotoxicology; 1984; 5(3):267-82. PubMed ID: 6097847 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]