These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 18615535)

  • 21. Septal columns in rodent barrel cortex: functional circuits for modulating whisking behavior.
    Alloway KD; Zhang M; Chakrabarti S
    J Comp Neurol; 2004 Dec; 480(3):299-309. PubMed ID: 15515173
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Subbarrel patterns of thalamocortical innervation in rat somatosensory cortical barrels: Organization and postnatal development.
    Louderback KM; Glass CS; Shamalla-Hannah L; Erickson SL; Land PW
    J Comp Neurol; 2006 Jul; 497(1):32-41. PubMed ID: 16680781
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The size of the whisker barrel field in adult rats: minimal nondirectional asymmetry and limited modifiability by chronic changes of the sensory input.
    Machín R; Blasco B; Bjugn R; Avendaño C
    Brain Res; 2004 Oct; 1025(1-2):130-8. PubMed ID: 15464753
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vivo and in vitro labelling of perineuronal nets in rat brain.
    Brückner G; Bringmann A; Köppe G; Härtig W; Brauer K
    Brain Res; 1996 May; 720(1-2):84-92. PubMed ID: 8782900
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of thalamocortical response transformations in the rat whisker-barrel system.
    Shoykhet M; Simons DJ
    J Neurophysiol; 2008 Jan; 99(1):356-66. PubMed ID: 17989240
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Construction of perineuronal net-like structure by cortical neurons in culture.
    Miyata S; Nishimura Y; Hayashi N; Oohira A
    Neuroscience; 2005; 136(1):95-104. PubMed ID: 16182457
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Voltage-sensitive dye imaging of intervibrissal fur-evoked activity in the rat somatosensory cortex.
    Takashima I; Kajiwara R; Iijima T
    Neurosci Lett; 2005 Jun; 381(3):258-63. PubMed ID: 15896480
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Input-selective potentiation and rebalancing of primary sensory cortex afferents by endogenous acetylcholine.
    Kuo MC; Rasmusson DD; Dringenberg HC
    Neuroscience; 2009 Sep; 163(1):430-41. PubMed ID: 19531370
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Temporal patterns of field potentials in vibrissa/barrel cortex reveal stimulus orientation and shape.
    Benison AM; Ard TD; Crosby AM; Barth DS
    J Neurophysiol; 2006 Apr; 95(4):2242-51. PubMed ID: 16394071
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genetic analysis of posterior medial barrel subfield (PMBSF) size in somatosensory cortex (SI) in recombinant inbred strains of mice.
    Jan TA; Lu L; Li CX; Williams RW; Waters RS
    BMC Neurosci; 2008 Jan; 9():3. PubMed ID: 18179704
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Non-homogeneous spatial configuration of vibrissae cortical representation in layer IV of the barrel somatosensory cortex.
    Guic E; Carrasco X; Rodríguez E; Robles I; Merzenich MM
    Biol Res; 2008; 41(4):461-71. PubMed ID: 19621126
    [TBL] [Abstract][Full Text] [Related]  

  • 32. NG2 cells are uniformly distributed and NG2 is not required for barrel formation in the somatosensory cortex.
    Hill RA; Natsume R; Sakimura K; Nishiyama A
    Mol Cell Neurosci; 2011 Apr; 46(4):689-98. PubMed ID: 21292011
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Composition of perineuronal nets in the adult rat cerebellum and the cellular origin of their components.
    Carulli D; Rhodes KE; Brown DJ; Bonnert TP; Pollack SJ; Oliver K; Strata P; Fawcett JW
    J Comp Neurol; 2006 Feb; 494(4):559-77. PubMed ID: 16374793
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Activity-dependent formation and functions of chondroitin sulfate-rich extracellular matrix of perineuronal nets.
    Dityatev A; Brückner G; Dityateva G; Grosche J; Kleene R; Schachner M
    Dev Neurobiol; 2007 Apr; 67(5):570-88. PubMed ID: 17443809
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modular distribution of vasoactive intestinal polypeptide in the rat barrel cortex: changes induced by neonatal removal of vibrissae.
    Hajós F; Zilles K; Zsarnovszky A; Sótonyi P; Gallatz K; Schleicher A
    Neuroscience; 1998 Jul; 85(1):45-52. PubMed ID: 9607701
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Heterogeneity in the coding in rat barrel cortex of the velocity of protraction of the macrovibrissae.
    Rajan R; Browning AS; Bourke JL
    Eur J Neurosci; 2007 Apr; 25(8):2383-403. PubMed ID: 17445236
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of the spinal-medullary projection from the mouse barrel field.
    Crandall JE; Whitcomb JM; Caviness VS
    J Comp Neurol; 1985 Sep; 239(2):205-15. PubMed ID: 4044935
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Unilateral induced neocortical malformation and the formation of ipsilateral and contralateral barrel fields.
    Rosen GD; Windzio H; Galaburda AM
    Neuroscience; 2001; 103(4):931-9. PubMed ID: 11301202
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Information processing streams in rodent barrel cortex: the differential functions of barrel and septal circuits.
    Alloway KD
    Cereb Cortex; 2008 May; 18(5):979-89. PubMed ID: 17702950
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Anterolateral Barrel Subfield Differs from the Posteromedial Barrel Subfield in the Morphology and Cell Density of Parvalbumin-Positive GABAergic Interneurons.
    Shigematsu N; Miyamoto Y; Esumi S; Fukuda T
    eNeuro; 2024 Mar; 11(3):. PubMed ID: 38438262
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.