These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 1861563)

  • 1. Wavelength dependence of pulsed laser ablation of calcified tissue.
    Izatt JA; Albagli D; Britton M; Jubas JM; Itzkan I; Feld MS
    Lasers Surg Med; 1991; 11(3):238-49. PubMed ID: 1861563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mid-IR laser ablation of articular and fibro-cartilage: a wavelength dependence study of thermal injury and crater morphology.
    Youn JI; Sweet P; Peavy GM; Venugopalan V
    Lasers Surg Med; 2006 Mar; 38(3):218-28. PubMed ID: 16453331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of particle size generated during plaque ablation with a flashlamp pumped pulsed dye laser.
    Froelich JJ; Möckel JW; Azumi N; Barth KH
    Cardiovasc Intervent Radiol; 1995; 18(1):35-8. PubMed ID: 7788630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of excimer laser (308 nm) ablation of the human lens nucleus in air and saline with a fiber optic delivery system.
    Martinez M; Maguen E; Bardenstein D; Duffy M; Yoser S; Papaioannou T; Grundfest W
    Refract Corneal Surg; 1992; 8(5):368-74. PubMed ID: 1450118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dental hard tissue ablation using mid-infrared tunable nanosecond pulsed Cr:CdSe laser.
    Lin T; Aoki A; Saito N; Yumoto M; Nakajima S; Nagasaka K; Ichinose S; Mizutani K; Wada S; Izumi Y
    Lasers Surg Med; 2016 Dec; 48(10):965-977. PubMed ID: 27020165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of calcified atherosclerotic plaque by laser-induced plasma emission.
    Deckelbaum LI; Scott JJ; Stetz ML; O'Brien KM; Baker G
    Lasers Surg Med; 1992; 12(1):18-24. PubMed ID: 1614261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of skin lesions produced by focused, tunable, mid-infrared chalcogenide laser radiation.
    Evers M; Ha L; Casper M; Welford D; Kositratna G; Birngruber R; Manstein D
    Lasers Surg Med; 2018 Sep; 50(9):961-972. PubMed ID: 29799127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of mass removal, thermal injury, and crater morphology of cortical bone ablation using wavelengths 2.79, 2.9, 6.1, and 6.45 microm.
    Youn JI; Sweet P; Peavy GM
    Lasers Surg Med; 2007 Apr; 39(4):332-40. PubMed ID: 17457836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Free electron laser ablation of articular and fibro-cartilage at 2.79, 2.9, 6.1, and 6.45 microm: mass removal studies.
    Youn JI; Peavy GM; Venugopalan V
    Lasers Surg Med; 2005 Mar; 36(3):202-9. PubMed ID: 15704094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Delivery of midinfrared (6 to 7-microm) laser radiation in a liquid environment using infrared-transmitting optical fibers.
    Mackanos MA; Jansen ED; Shaw BL; Sanghera JS; Aggarwal I; Katzir A
    J Biomed Opt; 2003 Oct; 8(4):583-93. PubMed ID: 14563195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoablation of gelatin with the free-electron laser between 2.7 and 6.7 microns.
    Jean B; Bende T
    J Refract Corneal Surg; 1994; 10(4):433-8. PubMed ID: 7528615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excimer laser ablation of the lens.
    Nanevicz TM; Prince MR; Gawande AA; Puliafito CA
    Arch Ophthalmol; 1986 Dec; 104(12):1825-9. PubMed ID: 3789982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics of 308 nm excimer laser activated arterial tissue photoemission under ablative and non-ablative conditions.
    Laufer G; Wollenek G; Rüeckle B; Buchelt M; Kuckla C; Ruatti H; Buxbaum P; Fasol R; Zilla P
    Lasers Surg Med; 1989; 9(6):556-71. PubMed ID: 2601549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pulsed holmium laser ablation of cardiac valves.
    Lilge L; Radtke W; Nishioka NS
    Lasers Surg Med; 1989; 9(5):458-64. PubMed ID: 2811568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laser ablation as a function of the primary absorber in dentin.
    Ostertag M; McKinley JT; Reinisch L; Harris DM; Tolk NH
    Lasers Surg Med; 1997; 21(4):384-94. PubMed ID: 9328986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mid-infrared pulsed laser ablation of the arterial wall. Mechanical origin of "acoustic" wall damage and its effect on wall healing.
    van Erven L; van Leeuwen TG; Post MJ; van der Veen MJ; Velema E; Borst C
    J Thorac Cardiovasc Surg; 1992 Oct; 104(4):1053-9. PubMed ID: 1405663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanosecond, high-intensity pulsed laser ablation of myocardium tissue at the ultraviolet, visible, and near-infrared wavelengths: in-vitro study.
    Sato S; Ogura M; Ishihara M; Kawauchi S; Arai T; Matsui T; Kurita A; Obara M; Kikuchi M; Ashida H
    Lasers Surg Med; 2001; 29(5):464-73. PubMed ID: 11891735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasma-mediated excimer laser ablation of bone: a potential microsurgical tool.
    Sarkar R; Fabian RL; Nuss RC; Puliafito CA
    Am J Otolaryngol; 1989; 10(2):76-84. PubMed ID: 2929885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laser cutting of bone tissue under bulk water with a pulsed ps-laser at 532 nm.
    Tulea CA; Caron J; Gehlich N; Lenenbach A; Noll R; Loosen P
    J Biomed Opt; 2015 Oct; 20(10):105007. PubMed ID: 26469563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Infrared laser surgery of the cornea. Studies with a Raman-shifted neodymium:YAG laser at 2.80 and 2.92 micron.
    Stern D; Puliafito CA; Dobi ET; Reidy WT
    Ophthalmology; 1988 Oct; 95(10):1434-41. PubMed ID: 3226691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.