These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 18615744)

  • 1. Measurement of k(L)a by dynamic pressure method in pilot-plant fermentor.
    Linek V; Moucha T; Dousová M; Sinkule J
    Biotechnol Bioeng; 1994 Mar; 43(6):477-82. PubMed ID: 18615744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined sulfite method for the measurement of the oxygen transfer coefficient k(L)a in bio-reactors.
    Puskeiler R; Weuster-Botz D
    J Biotechnol; 2005 Dec; 120(4):430-8. PubMed ID: 16098623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic pressure method for kla measurement in large-scale bioreactors.
    Linek V; Benes P; Vacek V
    Biotechnol Bioeng; 1989 May; 33(11):1406-12. PubMed ID: 18587880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Critical assessment of the steady-state Na2SO3 feeding method for kla measurement in fermentors.
    Linek V; Benes P; Sinkule J
    Biotechnol Bioeng; 1990 Apr; 35(8):766-70. PubMed ID: 18592576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple Na(2)SO(3) feeding method for K(L)a measurement in large-scale fermentors.
    Imai Y; Takei H; Matsumura M
    Biotechnol Bioeng; 1987 Jun; 29(8):982-93. PubMed ID: 18576548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical assessment of gassing-in methods for measuring k(l)a in fermentors.
    Linek V; Sinkule J; Benes P
    Biotechnol Bioeng; 1991 Aug; 38(4):323-30. PubMed ID: 18600768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of oxygen adsorption on the dynamic K(L)a measurement in three-phase slurry reactors.
    Boon M; Meeder TA; Heijnen JJ; Luyben KC
    Biotechnol Bioeng; 1992 Nov; 40(9):1097-106. PubMed ID: 18601219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of oxygen transfer in miniature and lab-scale bubble column bioreactors and comparison of microbial growth performance based on constant k(L)a.
    Doig SD; Ortiz-Ochoa K; Ward JM; Baganz F
    Biotechnol Prog; 2005; 21(4):1175-82. PubMed ID: 16080699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of power consumption and oxygen transfer characteristics of a stirred miniature bioreactor for predictive fermentation scale-up.
    Gill NK; Appleton M; Baganz F; Lye GJ
    Biotechnol Bioeng; 2008 Aug; 100(6):1144-55. PubMed ID: 18404769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study of mass transfer in yeast in a pulsed baffled bioreactor.
    Ni X; Gao S; Pritchard DW
    Biotechnol Bioeng; 1995 Jan; 45(2):165-75. PubMed ID: 18623099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Citric acid production by Candida lipolytica Y 1095 in cell recycle and fed-batch fermentors.
    Rane KD; Sims KA
    Biotechnol Bioeng; 1995 May; 46(4):325-32. PubMed ID: 18623319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation for volumetric mass transfer coefficient in mechanically agitated aerated vessel for oxygen absorption in aqueous electrolyte solutions.
    Linek V; Benes P; Holecek O
    Biotechnol Bioeng; 1988 Aug; 32(4):482-90. PubMed ID: 18587746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibitory effect of carbon dioxide on the fed-batch culture of Ralstonia eutropha: evaluation by CO2 pulse injection and autogenous CO2 methods.
    Shang L; Jiang M; Ryu CH; Chang HN; Cho SH; Lee JW
    Biotechnol Bioeng; 2003 Aug; 83(3):312-20. PubMed ID: 12783487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dense cell retention culture system using stirred ceramic membrane reactor.
    Suzuki T; Sato T; Kominami M
    Biotechnol Bioeng; 1994 Nov; 44(10):1186-92. PubMed ID: 18618544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxygen and carbon dioxide mass transfer and the aerobic, autotrophic cultivation of moderate and extreme thermophiles: a case study related to the microbial desulfurization of coal.
    Boogerd FC; Bos P; Kuenen JG; Heijnen JJ; van der Lans RG
    Biotechnol Bioeng; 1990 May; 35(11):1111-9. PubMed ID: 18592489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On-line gas analysis in animal cell cultivation: II. Methods for oxygen uptake rate estimation and its application to controlled feeding of glutamine.
    Eyer K; Oeggerli A; Heinzle E
    Biotechnol Bioeng; 1995 Jan; 45(1):54-62. PubMed ID: 18623051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated optical sensing of dissolved oxygen in microtiter plates: a novel tool for microbial cultivation.
    John GT; Klimant I; Wittmann C; Heinzle E
    Biotechnol Bioeng; 2003 Mar; 81(7):829-36. PubMed ID: 12557316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scale-up of enzymatic production of lactobionic acid using the rotary jet head system.
    Hua L; Nordkvist M; Nielsen PM; Villadsen J
    Biotechnol Bioeng; 2007 Jul; 97(4):842-9. PubMed ID: 17154315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-yield growth and magnetosome formation by Magnetospirillum gryphiswaldense MSR-1 in an oxygen-controlled fermentor supplied solely with air.
    Sun JB; Zhao F; Tang T; Jiang W; Tian JS; Li Y; Li JL
    Appl Microbiol Biotechnol; 2008 Jun; 79(3):389-97. PubMed ID: 18425510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scale-up of Escherichia coli growth and recombinant protein expression conditions from microwell to laboratory and pilot scale based on matched k(L)a.
    Islam RS; Tisi D; Levy MS; Lye GJ
    Biotechnol Bioeng; 2008 Apr; 99(5):1128-39. PubMed ID: 17969169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.