These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 18616248)

  • 1. Cyclic 1,3-dipoles or acyclic phosphonium ylides? Electronic characterization of "Montréalones".
    Krenske EH; Houk KN; Arndtsen BA; St Cyr DJ
    J Am Chem Soc; 2008 Aug; 130(31):10052-3. PubMed ID: 18616248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phospha-Münchnones: electronic structures and 1,3-dipolar cycloadditions.
    St-Cyr DJ; Morin MS; Bélanger-Gariépy F; Arndtsen BA; Krenske EH; Houk KN
    J Org Chem; 2010 Jun; 75(12):4261-73. PubMed ID: 20481447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theory of 1,3-dipolar cycloadditions: distortion/interaction and frontier molecular orbital models.
    Ess DH; Houk KN
    J Am Chem Soc; 2008 Aug; 130(31):10187-98. PubMed ID: 18613669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thinking out of the black box: accurate barrier heights of 1,3-dipolar cycloadditions of ozone with acetylene and ethylene.
    Wheeler SE; Ess DH; Houk KN
    J Phys Chem A; 2008 Feb; 112(8):1798-807. PubMed ID: 18247512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ring strain energy in the cyclooctyl system. The effect of strain energy on [3 + 2] cycloaddition reactions with azides.
    Bach RD
    J Am Chem Soc; 2009 Apr; 131(14):5233-43. PubMed ID: 19301865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactivity and selectivity in the Wittig reaction: a computational study.
    Robiette R; Richardson J; Aggarwal VK; Harvey JN
    J Am Chem Soc; 2006 Feb; 128(7):2394-409. PubMed ID: 16478195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel 1,3-dipolar cycloadditions of dinitraminic acid: implications for the chemical stability of ammonium dinitramide.
    Rahm M; Brinck T
    J Phys Chem A; 2008 Mar; 112(11):2456-63. PubMed ID: 18278886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel substituent effects on the mechanism of the thermal denitrogenation of 2,3-diazabicyclo[2.2.1]hept-2-ene derivatives, stepwise versus concerted.
    Abe M; Ishihara C; Kawanami S; Masuyama A
    J Am Chem Soc; 2005 Jan; 127(1):10-1. PubMed ID: 15631423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic aspects of propene epoxidation by hydrogen peroxide. Catalytic role of water molecules, external electric field, and zeolite framework of TS-1.
    Stare J; Henson NJ; Eckert J
    J Chem Inf Model; 2009 Apr; 49(4):833-46. PubMed ID: 19267473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational studies on the electrocyclizations of 1-amino-1,3,5-hexatrienes.
    Guner VA; Houk KN; Davies IW
    J Org Chem; 2004 Nov; 69(23):8024-8. PubMed ID: 15527286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical prediction of the hydride affinities of various p- and o-quinones in DMSO.
    Zhu XQ; Wang CH; Liang H; Cheng JP
    J Org Chem; 2007 Feb; 72(3):945-56. PubMed ID: 17253815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cycloaddition reactions of butadiene and 1,3-dipoles to curved arenes, fullerenes, and nanotubes: theoretical evaluation of the role of distortion energies on activation barriers.
    Osuna S; Houk KN
    Chemistry; 2009 Dec; 15(47):13219-31. PubMed ID: 19876972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the effect of tether composition on cis/trans selectivity in intramolecular Diels-Alder reactions.
    Paddon-Row MN; Longshaw AI; Willis AC; Sherburn MS
    Chem Asian J; 2009 Jan; 4(1):126-34. PubMed ID: 19006172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rearrangement of 1,3-dipolar cycloadducts derived from bis(phenylazo)stilbene: a DFT level mechanistic investigation.
    Suresh CH; Ramaiah D; George MV
    J Org Chem; 2007 Jan; 72(2):367-75. PubMed ID: 17221951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrotrioxides rather than cyclic tetraoxides (tetraoxolanes) as the primary reaction intermediates in the low-temperature ozonation of aldehydes. The case of benzaldehyde.
    Cerkovnik J; Plesnicar B; Koller J; Tuttle T
    J Org Chem; 2009 Jan; 74(1):96-101. PubMed ID: 19007299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis, spectroscopic characterization, and conformational properties of trichloromethanesulfenyl acetate, CCl3SOC(O)CH3.
    Reina MC; Boese R; Ge M; Ulic SE; Beckers H; Willner H; Della Védova CO
    J Phys Chem A; 2008 Aug; 112(34):7939-46. PubMed ID: 18671379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermochemistry of the HOSO radical, a key intermediate in fossil fuel combustion.
    Wheeler SE; Schaefer HF
    J Phys Chem A; 2009 Jun; 113(24):6779-88. PubMed ID: 19459665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A quantum chemistry study of Diels-Alder dimerizations in benzene and anthracene.
    Quenneville J; Germann TC
    J Chem Phys; 2009 Jul; 131(2):024313. PubMed ID: 19603997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unusual noncovalent interaction between the chelated Cu(II) ion and the pi bond in the vitamin B(13) complex, cis-diammine(orotato)copper(II): theoretical and vibrational spectroscopy studies.
    Helios K; Wysokiński R; Zierkiewicz W; Proniewicz LM; Michalska D
    J Phys Chem B; 2009 Jun; 113(23):8158-69. PubMed ID: 19453135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Remote substituent effects on allylic and benzylic bond dissociation energies. Effects on stabilization of parent molecules and radicals.
    Zavitsas AA; Rogers DW; Matsunaga N
    J Org Chem; 2007 Sep; 72(19):7091-101. PubMed ID: 17715965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.