These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 18616293)
1. Subdividing repressor function: DNA binding affinity, selectivity, and allostery can be altered by amino acid substitution of nonconserved residues in a LacI/GalR homologue. Zhan H; Taraban M; Trewhella J; Swint-Kruse L Biochemistry; 2008 Aug; 47(31):8058-69. PubMed ID: 18616293 [TBL] [Abstract][Full Text] [Related]
2. Functional consequences of exchanging domains between LacI and PurR are mediated by the intervening linker sequence. Tungtur S; Egan SM; Swint-Kruse L Proteins; 2007 Jul; 68(1):375-88. PubMed ID: 17436321 [TBL] [Abstract][Full Text] [Related]
3. Comparing the functional roles of nonconserved sequence positions in homologous transcription repressors: implications for sequence/function analyses. Tungtur S; Meinhardt S; Swint-Kruse L J Mol Biol; 2010 Jan; 395(4):785-802. PubMed ID: 19818797 [TBL] [Abstract][Full Text] [Related]
4. Experimental identification of specificity determinants in the domain linker of a LacI/GalR protein: bioinformatics-based predictions generate true positives and false negatives. Meinhardt S; Swint-Kruse L Proteins; 2008 Dec; 73(4):941-57. PubMed ID: 18536016 [TBL] [Abstract][Full Text] [Related]
5. Fine-tuning function: correlation of hinge domain interactions with functional distinctions between LacI and PurR. Swint-Kruse L; Larson C; Pettitt BM; Matthews KS Protein Sci; 2002 Apr; 11(4):778-94. PubMed ID: 11910022 [TBL] [Abstract][Full Text] [Related]
6. Engineered disulfide linking the hinge regions within lactose repressor dimer increases operator affinity, decreases sequence selectivity, and alters allostery. Falcon CM; Matthews KS Biochemistry; 2001 Dec; 40(51):15650-9. PubMed ID: 11747440 [TBL] [Abstract][Full Text] [Related]
8. Operator DNA sequence variation enhances high affinity binding by hinge helix mutants of lactose repressor protein. Falcon CM; Matthews KS Biochemistry; 2000 Sep; 39(36):11074-83. PubMed ID: 10998245 [TBL] [Abstract][Full Text] [Related]
9. Ion concentration and temperature dependence of DNA binding: comparison of PurR and LacI repressor proteins. Moraitis MI; Xu H; Matthews KS Biochemistry; 2001 Jul; 40(27):8109-17. PubMed ID: 11434780 [TBL] [Abstract][Full Text] [Related]
10. Allostery in the LacI/GalR family: variations on a theme. Swint-Kruse L; Matthews KS Curr Opin Microbiol; 2009 Apr; 12(2):129-37. PubMed ID: 19269243 [TBL] [Abstract][Full Text] [Related]
11. Parallel evolution of ligand specificity between LacI/GalR family repressors and periplasmic sugar-binding proteins. Fukami-Kobayashi K; Tateno Y; Nishikawa K Mol Biol Evol; 2003 Feb; 20(2):267-77. PubMed ID: 12598694 [TBL] [Abstract][Full Text] [Related]
12. Ligand-induced conformational changes and conformational dynamics in the solution structure of the lactose repressor protein. Taraban M; Zhan H; Whitten AE; Langley DB; Matthews KS; Swint-Kruse L; Trewhella J J Mol Biol; 2008 Feb; 376(2):466-81. PubMed ID: 18164724 [TBL] [Abstract][Full Text] [Related]
13. Plasticity of quaternary structure: twenty-two ways to form a LacI dimer. Swint-Kruse L; Elam CR; Lin JW; Wycuff DR; Shive Matthews K Protein Sci; 2001 Feb; 10(2):262-76. PubMed ID: 11266612 [TBL] [Abstract][Full Text] [Related]
14. Combinations of the alpha-helix-turn-alpha-helix motif of TetR with respective residues from LacI or 434Cro: DNA recognition, inducer binding, and urea-dependent denaturation. Backes H; Berens C; Helbl V; Walter S; Schmid FX; Hillen W Biochemistry; 1997 May; 36(18):5311-22. PubMed ID: 9154913 [TBL] [Abstract][Full Text] [Related]
15. Perturbation from a distance: mutations that alter LacI function through long-range effects. Swint-Kruse L; Zhan H; Fairbanks BM; Maheshwari A; Matthews KS Biochemistry; 2003 Dec; 42(47):14004-16. PubMed ID: 14636069 [TBL] [Abstract][Full Text] [Related]
16. Thermodynamics of the interactions of lac repressor with variants of the symmetric lac operator: effects of converting a consensus site to a non-specific site. Frank DE; Saecker RM; Bond JP; Capp MW; Tsodikov OV; Melcher SE; Levandoski MM; Record MT J Mol Biol; 1997 Apr; 267(5):1186-206. PubMed ID: 9150406 [TBL] [Abstract][Full Text] [Related]
17. Integrated insights from simulation, experiment, and mutational analysis yield new details of LacI function. Swint-Kruse L; Zhan H; Matthews KS Biochemistry; 2005 Aug; 44(33):11201-13. PubMed ID: 16101304 [TBL] [Abstract][Full Text] [Related]
18. Cooperative and anticooperative effects in binding of the first and second plasmid Osym operators to a LacI tetramer: evidence for contributions of non-operator DNA binding by wrapping and looping. Levandoski MM; Tsodikov OV; Frank DE; Melcher SE; Saecker RM; Record MT J Mol Biol; 1996 Aug; 260(5):697-717. PubMed ID: 8709149 [TBL] [Abstract][Full Text] [Related]
19. Altering residues N125 and D149 impacts sugar effector binding and allosteric parameters in Escherichia coli lactose repressor. Xu J; Liu S; Chen M; Ma J; Matthews KS Biochemistry; 2011 Oct; 50(42):9002-13. PubMed ID: 21928765 [TBL] [Abstract][Full Text] [Related]
20. Flexibility in the inducer binding region is crucial for allostery in the Escherichia coli lactose repressor. Xu J; Matthews KS Biochemistry; 2009 Jun; 48(22):4988-98. PubMed ID: 19368358 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]