BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 18616929)

  • 21. Germline signals deploy NHR-49 to modulate fatty-acid β-oxidation and desaturation in somatic tissues of C. elegans.
    Ratnappan R; Amrit FR; Chen SW; Gill H; Holden K; Ward J; Yamamoto KR; Olsen CP; Ghazi A
    PLoS Genet; 2014 Dec; 10(12):e1004829. PubMed ID: 25474470
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gain-of-Function Alleles in Caenorhabditis elegans Nuclear Hormone Receptor nhr-49 Are Functionally Distinct.
    Lee K; Goh GY; Wong MA; Klassen TL; Taubert S
    PLoS One; 2016; 11(9):e0162708. PubMed ID: 27618178
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Knockdown of the NHR-8 nuclear receptor enhanced sensitivity to the lipid-reducing activity of alkaloids in Caenorhabditis elegans.
    Chow YL; Kawasaki Y; Sato F
    Biosci Biotechnol Biochem; 2014; 78(12):2008-13. PubMed ID: 25052035
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A proteomic analysis of Caenorhabditis elegans mitochondria during bacterial infection.
    Mir DA; Balamurugan K
    Mitochondrion; 2019 Sep; 48():37-50. PubMed ID: 30926536
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Diversification of fasting regulated transcription in a cluster of duplicated nuclear hormone receptors in C. elegans.
    Vohanka J; Simecková K; Machalová E; Behenský F; Krause MW; Kostrouch Z; Kostrouchová M
    Gene Expr Patterns; 2010 Sep; 10(6):227-36. PubMed ID: 20460175
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proteomics applications in Caenorhabditis elegans research.
    Husson SJ; Moyson S; Valkenborg D; Baggerman G; Mertens I
    Biochem Biophys Res Commun; 2015 Dec; 468(4):519-24. PubMed ID: 26585491
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ilex paraguariensis modulates fat metabolism in Caenorhabditis elegans through purinergic system (ADOR-1) and nuclear hormone receptor (NHR-49) pathways.
    Machado ML; Arantes LP; Gubert P; Zamberlan DC; da Silva TC; da Silveira TL; Boligon A; Soares FAA
    PLoS One; 2018; 13(9):e0204023. PubMed ID: 30252861
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Caenorhabditis elegans orphan nuclear hormone receptor gene nhr-2 functions in early embryonic development.
    Sluder AE; Lindblom T; Ruvkun G
    Dev Biol; 1997 Apr; 184(2):303-19. PubMed ID: 9133437
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantitative Profiling Identifies Potential Regulatory Proteins Involved in Development from Dauer Stage to L4 Stage in Caenorhabditis elegans.
    Kim S; Lee HJ; Hahm JH; Jeong SK; Park DH; Hancock WS; Paik YK
    J Proteome Res; 2016 Feb; 15(2):531-9. PubMed ID: 26751275
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Caenorhabditis elegans NR4A nuclear receptor is required for spermatheca morphogenesis.
    Gissendanner CR; Kelley K; Nguyen TQ; Hoener MC; Sluder AE; Maina CV
    Dev Biol; 2008 Jan; 313(2):767-86. PubMed ID: 18096150
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The C. elegans NR4A nuclear receptor gene nhr-6 promotes cell cycle progression in the spermatheca lineage.
    Praslicka B; Gissendanner CR
    Dev Dyn; 2015 Mar; 244(3):417-30. PubMed ID: 25529479
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative proteomics by amino acid labeling in C. elegans.
    Fredens J; Engholm-Keller K; Giessing A; Pultz D; Larsen MR; Højrup P; Møller-Jensen J; Færgeman NJ
    Nat Methods; 2011 Aug; 8(10):845-7. PubMed ID: 21874006
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Mediator subunit, MDT-15, integrates regulation of fatty acid metabolism by NHR-49-dependent and -independent pathways in C. elegans.
    Taubert S; Van Gilst MR; Hansen M; Yamamoto KR
    Genes Dev; 2006 May; 20(9):1137-49. PubMed ID: 16651656
    [TBL] [Abstract][Full Text] [Related]  

  • 34. NHR-80 senses the mitochondrial UPR to rewire citrate metabolism for lipid accumulation in Caenorhabditis elegans.
    Yang R; Li Y; Wang Y; Zhang J; Fan Q; Tan J; Li W; Zou X; Liang B
    Cell Rep; 2022 Jan; 38(2):110206. PubMed ID: 35021096
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative genetic, proteomic and phosphoproteomic analysis of C. elegans embryos with a focus on ham-1/STOX and pig-1/MELK in dopaminergic neuron development.
    Offenburger SL; Bensaddek D; Murillo AB; Lamond AI; Gartner A
    Sci Rep; 2017 Jun; 7(1):4314. PubMed ID: 28659600
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of a Novel Link between the Intermediate Filament Organizer IFO-1 and Cholesterol Metabolism in the
    Coch RA; Geisler F; Annibal A; Antebi A; Leube RE
    Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33153048
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Global Proteomic Response of
    Mir DA; Balamurugan K
    Front Cell Infect Microbiol; 2019; 9():172. PubMed ID: 31214513
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative analysis of function and interaction of transcription factors in nematodes: extensive conservation of orthology coupled to rapid sequence evolution.
    Haerty W; Artieri C; Khezri N; Singh RS; Gupta BP
    BMC Genomics; 2008 Aug; 9():399. PubMed ID: 18752680
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of an estrogenic hormone receptor in Caenorhabditis elegans.
    Mimoto A; Fujii M; Usami M; Shimamura M; Hirabayashi N; Kaneko T; Sasagawa N; Ishiura S
    Biochem Biophys Res Commun; 2007 Dec; 364(4):883-8. PubMed ID: 17963693
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nematode nuclear receptors as integrators of sensory information.
    Sural S; Hobert O
    Curr Biol; 2021 Oct; 31(19):4361-4366.e2. PubMed ID: 34348120
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.