BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 18617375)

  • 1. Directed aggregation and fusion of lipid vesicles induced by DNA-surfactants.
    Maruyama T; Yamamura H; Hiraki M; Kemori Y; Takata H; Goto M
    Colloids Surf B Biointerfaces; 2008 Oct; 66(1):119-24. PubMed ID: 18617375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. General method for modification of liposomes for encoded assembly on supported bilayers.
    Yoshina-Ishii C; Miller GP; Kraft ML; Kool ET; Boxer SG
    J Am Chem Soc; 2005 Feb; 127(5):1356-7. PubMed ID: 15686351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time observation of lipoplex formation and interaction with anionic bilayer vesicles.
    Pantazatos SP; MacDonald RC
    J Membr Biol; 2003 Jan; 191(2):99-112. PubMed ID: 12533777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arrays of mobile tethered vesicles on supported lipid bilayers.
    Yoshina-Ishii C; Boxer SG
    J Am Chem Soc; 2003 Apr; 125(13):3696-7. PubMed ID: 12656589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence of surfactant-induced formation of transient pores in lipid bilayers by using magnetic-fluid-loaded liposomes.
    Lesieur S; Grabielle-Madelmont C; Ménager C; Cabuil V; Dadhi D; Pierrot P; Edwards K
    J Am Chem Soc; 2003 May; 125(18):5266-7. PubMed ID: 12720425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-specific DNA-controlled fusion of single lipid vesicles to supported lipid bilayers.
    Simonsson L; Jönsson P; Stengel G; Höök F
    Chemphyschem; 2010 Apr; 11(5):1011-7. PubMed ID: 20301177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitive liposomes encoded with oligonucleotide amphiphiles: a biocompatible switch.
    Gissot A; Di Primo C; Bestel I; Giannone G; Chapuis H; Barthélémy P
    Chem Commun (Camb); 2008 Nov; (43):5550-2. PubMed ID: 18997948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structure of DNA-DLPC-cationic gemini surfactant aggregates: a small angle synchrotron X-ray diffraction study.
    Uhríková D; Hanulová M; Funari SS; Lacko I; Devínsky F; Balgavý P
    Biophys Chem; 2004 Nov; 111(3):197-204. PubMed ID: 15501562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of density and orientation of amphiphilic DNA on phospholipid membranes. II. Vesicles.
    Banchelli M; Gambinossi F; Durand A; Caminati G; Brown T; Berti D; Baglioni P
    J Phys Chem B; 2010 Jun; 114(21):7348-58. PubMed ID: 20446699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of n-octyl β,D-glucopyranoside with giant magnetic-fluid-loaded phosphatidylcholine vesicles: direct visualization of membrane curvature fluctuations as a function of surfactant partitioning between water and lipid bilayer.
    Ménager C; Guemghar D; Cabuil V; Lesieur S
    Langmuir; 2010 Oct; 26(19):15453-63. PubMed ID: 20825201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and phase behaviour of surface-active pharmaceuticals: self-assembly of DNA and surfactants with membranes. Differential adiabatic scanning microcalorimetric study.
    Süleymanoğlu E
    Farmaco; 2005 Aug; 60(8):701-10. PubMed ID: 16023120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catanionic surfactant vesicles for electrostatic molecular sequestration and separation.
    Lioi SB; Wang X; Islam MR; Danoff EJ; English DS
    Phys Chem Chem Phys; 2009 Nov; 11(41):9315-25. PubMed ID: 19830312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Giant vesicles: preparations and applications.
    Walde P; Cosentino K; Engel H; Stano P
    Chembiochem; 2010 May; 11(7):848-65. PubMed ID: 20336703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane-bound protein in giant vesicles: induced contraction and growth.
    Seredyuk VA; Menger FM
    J Am Chem Soc; 2004 Oct; 126(39):12256-7. PubMed ID: 15453745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipid bilayer elasticity measurements in giant liposomes in contact with a solubilizing surfactant.
    Ménager C; Guemghar D; Perzynski R; Lesieur S; Cabuil V
    Langmuir; 2008 May; 24(9):4968-74. PubMed ID: 18363418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulations of temperature dependence of the formation of a supported lipid bilayer via vesicle adsorption.
    Dimitrievski K; Reimhult E; Kasemo B; Zhdanov VP
    Colloids Surf B Biointerfaces; 2004 Nov; 39(1-2):77-86. PubMed ID: 15542344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supported lipid bilayers, tethered lipid vesicles, and vesicle fusion investigated using gravimetric, plasmonic, and microscopy techniques.
    Höök F; Stengel G; Dahlin AB; Gunnarsson A; Jonsson MP; Jönsson P; Reimhult E; Simonsson L; Svedhem S
    Biointerphases; 2008 Jun; 3(2):FA108. PubMed ID: 20408659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein-induced fusion of phospholipid vesicles of heterogeneous sizes.
    de Arcuri BF; Vechetti GF; Chehín RN; Goñi FM; Morero RD
    Biochem Biophys Res Commun; 1999 Sep; 262(3):586-90. PubMed ID: 10471367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of cetylpyridinium chloride with giant lipid vesicles.
    Arrigler V; Kogej K; Majhenc J; Svetina S
    Langmuir; 2005 Aug; 21(17):7653-61. PubMed ID: 16089366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions of novel, nonhemolytic surfactants with phospholipid vesicles.
    Thorén PE; Söderman O; Engström S; von Corswant C
    Langmuir; 2007 Jun; 23(13):6956-65. PubMed ID: 17516668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.