BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 18617507)

  • 1. Proteomics identification of nuclear Ran GTPase as an inhibitor of human VRK1 and VRK2 (vaccinia-related kinase) activities.
    Sanz-García M; López-Sánchez I; Lazo PA
    Mol Cell Proteomics; 2008 Nov; 7(11):2199-214. PubMed ID: 18617507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The human vaccinia-related kinase 1 (VRK1) phosphorylates threonine-18 within the mdm-2 binding site of the p53 tumour suppressor protein.
    Lopez-Borges S; Lazo PA
    Oncogene; 2000 Jul; 19(32):3656-64. PubMed ID: 10951572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The methylated N-terminal tail of RCC1 is required for stabilisation of its interaction with chromatin by Ran in live cells.
    Hitakomate E; Hood FE; Sanderson HS; Clarke PR
    BMC Cell Biol; 2010 Jun; 11():43. PubMed ID: 20565941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of three paralogous members of the Mammalian vaccinia related kinase family.
    Nichols RJ; Traktman P
    J Biol Chem; 2004 Feb; 279(9):7934-46. PubMed ID: 14645249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RanBP1 controls the Ran pathway in mammalian cells through regulation of mitotic RCC1 dynamics.
    Yau KC; Arnaoutov A; Aksenova V; Kaufhold R; Chen S; Dasso M
    Cell Cycle; 2020 Aug; 19(15):1899-1916. PubMed ID: 32594833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RCC1-dependent activation of Ran accelerates cell cycle and DNA repair, inhibiting DNA damage-induced cell senescence.
    Cekan P; Hasegawa K; Pan Y; Tubman E; Odde D; Chen JQ; Herrmann MA; Kumar S; Kalab P
    Mol Biol Cell; 2016 Apr; 27(8):1346-57. PubMed ID: 26864624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting of RCC1 to chromosomes is required for proper mitotic spindle assembly in human cells.
    Moore W; Zhang C; Clarke PR
    Curr Biol; 2002 Aug; 12(16):1442-7. PubMed ID: 12194828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural characterization of human Vaccinia-Related Kinases (VRK) bound to small-molecule inhibitors identifies different P-loop conformations.
    Couñago RM; Allerston CK; Savitsky P; Azevedo H; Godoi PH; Wells CI; Mascarello A; de Souza Gama FH; Massirer KB; Zuercher WJ; Guimarães CRW; Gileadi O
    Sci Rep; 2017 Aug; 7(1):7501. PubMed ID: 28790404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of two novel human putative serine/threonine kinases, VRK1 and VRK2, with structural similarity to vaccinia virus B1R kinase.
    Nezu J; Oku A; Jones MH; Shimane M
    Genomics; 1997 Oct; 45(2):327-31. PubMed ID: 9344656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mechanism of nuclear export of Smad3 involves exportin 4 and Ran.
    Kurisaki A; Kurisaki K; Kowanetz M; Sugino H; Yoneda Y; Heldin CH; Moustakas A
    Mol Cell Biol; 2006 Feb; 26(4):1318-32. PubMed ID: 16449645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential inhibitor sensitivity between human kinases VRK1 and VRK2.
    Vázquez-Cedeira M; Barcia-Sanjurjo I; Sanz-García M; Barcia R; Lazo PA
    PLoS One; 2011; 6(8):e23235. PubMed ID: 21829721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. N-terminal alpha-methylation of RCC1 is necessary for stable chromatin association and normal mitosis.
    Chen T; Muratore TL; Schaner-Tooley CE; Shabanowitz J; Hunt DF; Macara IG
    Nat Cell Biol; 2007 May; 9(5):596-603. PubMed ID: 17435751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorylation regulates the dynamic interaction of RCC1 with chromosomes during mitosis.
    Hutchins JR; Moore WJ; Hood FE; Wilson JS; Andrews PD; Swedlow JR; Clarke PR
    Curr Biol; 2004 Jun; 14(12):1099-104. PubMed ID: 15203004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Caffeine mimics adenine and 2'-deoxyadenosine, both of which inhibit the guanine-nucleotide exchange activity of RCC1 and the kinase activity of ATR.
    Nishijima H; Nishitani H; Saito N; Nishimoto T
    Genes Cells; 2003 May; 8(5):423-35. PubMed ID: 12694532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Apoptotic histone modification inhibits nuclear transport by regulating RCC1.
    Wong CH; Chan H; Ho CY; Lai SK; Chan KS; Koh CG; Li HY
    Nat Cell Biol; 2009 Jan; 11(1):36-45. PubMed ID: 19060893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of a conserved loop in Mog1 that releases GTP from Ran.
    Steggerda SM; Paschal BM
    Traffic; 2001 Nov; 2(11):804-11. PubMed ID: 11733047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cryo-EM of the Nucleosome Core Particle Bound to Ran-RCC1 Reveals a Dynamic Complex.
    Huang SK; Rubinstein JL; Kay LE
    Biochemistry; 2024 Apr; 63(7):880-892. PubMed ID: 38501608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model of the ran-RCC1 interaction using biochemical and docking experiments.
    Azuma Y; Renault L; García-Ranea JA; Valencia A; Nishimoto T; Wittinghofer A
    J Mol Biol; 1999 Jun; 289(4):1119-30. PubMed ID: 10369786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell cycle-dependent binding modes of the ran exchange factor RCC1 to chromatin.
    Bierbaum M; Bastiaens PI
    Biophys J; 2013 Apr; 104(8):1642-51. PubMed ID: 23601311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate profiling of human vaccinia-related kinases identifies coilin, a Cajal body nuclear protein, as a phosphorylation target with neurological implications.
    Sanz-García M; Vázquez-Cedeira M; Kellerman E; Renbaum P; Levy-Lahad E; Lazo PA
    J Proteomics; 2011 Dec; 75(2):548-60. PubMed ID: 21920476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.