These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 18617892)
1. SUMO1 modification of NF-kappaB2/p100 is essential for stimuli-induced p100 phosphorylation and processing. Vatsyayan J; Qing G; Xiao G; Hu J EMBO Rep; 2008 Sep; 9(9):885-90. PubMed ID: 18617892 [TBL] [Abstract][Full Text] [Related]
2. Tax deregulation of NF-kappaB2 p100 processing involves both beta-TrCP-dependent and -independent mechanisms. Qu Z; Qing G; Rabson A; Xiao G J Biol Chem; 2004 Oct; 279(43):44563-72. PubMed ID: 15310758 [TBL] [Abstract][Full Text] [Related]
3. beta-TrCP binding and processing of NF-kappaB2/p100 involve its phosphorylation at serines 866 and 870. Liang C; Zhang M; Sun SC Cell Signal; 2006 Aug; 18(8):1309-17. PubMed ID: 16303288 [TBL] [Abstract][Full Text] [Related]
4. NF-kappaB-inducing kinase regulates the processing of NF-kappaB2 p100. Xiao G; Harhaj EW; Sun SC Mol Cell; 2001 Feb; 7(2):401-9. PubMed ID: 11239468 [TBL] [Abstract][Full Text] [Related]
5. Stabilization of basally translated NF-kappaB-inducing kinase (NIK) protein functions as a molecular switch of processing of NF-kappaB2 p100. Qing G; Qu Z; Xiao G J Biol Chem; 2005 Dec; 280(49):40578-82. PubMed ID: 16223731 [TBL] [Abstract][Full Text] [Related]
6. TACI induces cIAP1-mediated ubiquitination of NIK by TRAF2 and TANK to limit non-canonical NF-kappaB signaling. Kanno Y; Sakurai D; Hase H; Kojima H; Kobata T J Recept Signal Transduct Res; 2010 Apr; 30(2):121-32. PubMed ID: 20184394 [TBL] [Abstract][Full Text] [Related]
7. Mechanism of processing of the NF-kappa B2 p100 precursor: identification of the specific polyubiquitin chain-anchoring lysine residue and analysis of the role of NEDD8-modification on the SCF(beta-TrCP) ubiquitin ligase. Amir RE; Haecker H; Karin M; Ciechanover A Oncogene; 2004 Apr; 23(14):2540-7. PubMed ID: 14676825 [TBL] [Abstract][Full Text] [Related]
8. New insights into NF-kappaB regulation and function. Sun SC; Ley SC Trends Immunol; 2008 Oct; 29(10):469-78. PubMed ID: 18775672 [TBL] [Abstract][Full Text] [Related]
9. TWEAK induces NF-kappaB2 p100 processing and long lasting NF-kappaB activation. Saitoh T; Nakayama M; Nakano H; Yagita H; Yamamoto N; Yamaoka S J Biol Chem; 2003 Sep; 278(38):36005-12. PubMed ID: 12840022 [TBL] [Abstract][Full Text] [Related]
10. CD40 regulates the processing of NF-kappaB2 p100 to p52. Coope HJ; Atkinson PG; Huhse B; Belich M; Janzen J; Holman MJ; Klaus GG; Johnston LH; Ley SC EMBO J; 2002 Oct; 21(20):5375-85. PubMed ID: 12374738 [TBL] [Abstract][Full Text] [Related]
11. Lymphotoxin and lipopolysaccharide induce NF-kappaB-p52 generation by a co-translational mechanism. Mordmüller B; Krappmann D; Esen M; Wegener E; Scheidereit C EMBO Rep; 2003 Jan; 4(1):82-7. PubMed ID: 12524526 [TBL] [Abstract][Full Text] [Related]
12. Induction of p100 processing by NF-kappaB-inducing kinase involves docking IkappaB kinase alpha (IKKalpha) to p100 and IKKalpha-mediated phosphorylation. Xiao G; Fong A; Sun SC J Biol Chem; 2004 Jul; 279(29):30099-105. PubMed ID: 15140882 [TBL] [Abstract][Full Text] [Related]
13. Genetic evidence for the essential role of beta-transducin repeat-containing protein in the inducible processing of NF-kappa B2/p100. Fong A; Sun SC J Biol Chem; 2002 Jun; 277(25):22111-4. PubMed ID: 11994270 [TBL] [Abstract][Full Text] [Related]
14. Essential role of IkappaB kinase alpha in the constitutive processing of NF-kappaB2 p100. Qing G; Xiao G J Biol Chem; 2005 Mar; 280(11):9765-8. PubMed ID: 15677466 [TBL] [Abstract][Full Text] [Related]
15. Helicobacter pylori activates NF-kappaB via the alternative pathway in B lymphocytes. Ohmae T; Hirata Y; Maeda S; Shibata W; Yanai A; Ogura K; Yoshida H; Kawabe T; Omata M J Immunol; 2005 Dec; 175(11):7162-9. PubMed ID: 16301619 [TBL] [Abstract][Full Text] [Related]
16. Accumulation of p100, a precursor of NF-κB2, enhances osteoblastic differentiation in vitro and bone formation in vivo in aly/aly mice. Seo Y; Fukushima H; Maruyama T; Kuroishi KN; Osawa K; Nagano K; Aoki K; Weih F; Doi T; Zhang M; Ohya K; Katagiri T; Hosokawa R; Jimi E Mol Endocrinol; 2012 Mar; 26(3):414-22. PubMed ID: 22282470 [TBL] [Abstract][Full Text] [Related]
17. SUMO modification of Akt regulates global SUMOylation and substrate SUMOylation specificity through Akt phosphorylation of Ubc9 and SUMO1. Lin CH; Liu SY; Lee EH Oncogene; 2016 Feb; 35(5):595-607. PubMed ID: 25867063 [TBL] [Abstract][Full Text] [Related]
18. SUMO1 negatively regulates reactive oxygen species production from NADPH oxidases. Pandey D; Chen F; Patel A; Wang CY; Dimitropoulou C; Patel VS; Rudic RD; Stepp DW; Fulton DJ Arterioscler Thromb Vasc Biol; 2011 Jul; 31(7):1634-42. PubMed ID: 21527745 [TBL] [Abstract][Full Text] [Related]
19. The IkappaB function of NF-kappaB2 p100 controls stimulated osteoclastogenesis. Novack DV; Yin L; Hagen-Stapleton A; Schreiber RD; Goeddel DV; Ross FP; Teitelbaum SL J Exp Med; 2003 Sep; 198(5):771-81. PubMed ID: 12939342 [TBL] [Abstract][Full Text] [Related]
20. Hsp90 regulates processing of NF-kappa B2 p100 involving protection of NF-kappa B-inducing kinase (NIK) from autophagy-mediated degradation. Qing G; Yan P; Qu Z; Liu H; Xiao G Cell Res; 2007 Jun; 17(6):520-30. PubMed ID: 17563756 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]