These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

405 related articles for article (PubMed ID: 18617989)

  • 21. Network topology and the evolution of dynamics in an artificial genetic regulatory network model created by whole genome duplication and divergence.
    Dwight Kuo P; Banzhaf W; Leier A
    Biosystems; 2006 Sep; 85(3):177-200. PubMed ID: 16650928
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genes under weaker stabilizing selection increase network evolvability and rapid regulatory adaptation to an environmental shift.
    Laarits T; Bordalo P; Lemos B
    J Evol Biol; 2016 Aug; 29(8):1602-16. PubMed ID: 27213992
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gene Loss Predictably Drives Evolutionary Adaptation.
    Helsen J; Voordeckers K; Vanderwaeren L; Santermans T; Tsontaki M; Verstrepen KJ; Jelier R
    Mol Biol Evol; 2020 Oct; 37(10):2989-3002. PubMed ID: 32658971
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Selection for distinct gene expression properties favours the evolution of mutational robustness in gene regulatory networks.
    Espinosa-Soto C
    J Evol Biol; 2016 Nov; 29(11):2321-2333. PubMed ID: 27500589
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genetic redundancy caused by gene duplications and its evolution in networks of transcriptional regulators.
    Wagner A
    Biol Cybern; 1996 Jun; 74(6):557-67. PubMed ID: 8672563
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The influence of assortativity on the robustness and evolvability of gene regulatory networks upon gene birth.
    Pechenick DA; Moore JH; Payne JL
    J Theor Biol; 2013 Aug; 330():26-36. PubMed ID: 23542384
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Correlated stabilizing selection shapes the topology of gene regulatory networks.
    Petit AJR; Guez J; Le Rouzic A
    Genetics; 2023 May; 224(2):. PubMed ID: 37070537
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The mutation matrix and the evolution of evolvability.
    Jones AG; Arnold SJ; Bürger R
    Evolution; 2007 Apr; 61(4):727-45. PubMed ID: 17439608
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The evolution of heterogeneities altered by mutational robustness, gene expression noise and bottlenecks in gene regulatory networks.
    Zhang Z
    PLoS One; 2014; 9(12):e116167. PubMed ID: 25541720
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evolutionary transitions in controls reconcile adaptation with continuity of evolution.
    Badyaev AV
    Semin Cell Dev Biol; 2019 Apr; 88():36-45. PubMed ID: 29778791
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The evolution, evolvability and engineering of gene regulatory DNA.
    Vaishnav ED; de Boer CG; Molinet J; Yassour M; Fan L; Adiconis X; Thompson DA; Levin JZ; Cubillos FA; Regev A
    Nature; 2022 Mar; 603(7901):455-463. PubMed ID: 35264797
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional and evolutionary inference in gene networks: does topology matter?
    Siegal ML; Promislow DE; Bergman A
    Genetica; 2007 Jan; 129(1):83-103. PubMed ID: 16897451
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Towards more biological mutation operators in gene regulation studies.
    Watson J; Geard N; Wiles J
    Biosystems; 2004; 76(1-3):239-48. PubMed ID: 15351147
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evolution of networks for body plan patterning; interplay of modularity, robustness and evolvability.
    Ten Tusscher KH; Hogeweg P
    PLoS Comput Biol; 2011 Oct; 7(10):e1002208. PubMed ID: 21998573
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multidimensional adaptive evolution of a feed-forward network and the illusion of compensation.
    Bullaughey K
    Evolution; 2013 Jan; 67(1):49-65. PubMed ID: 23289561
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Long-term adaptation of epistatic genetic networks.
    Yukilevich R; Lachance J; Aoki F; True JR
    Evolution; 2008 Sep; 62(9):2215-35. PubMed ID: 18564374
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On the role of sparseness in the evolution of modularity in gene regulatory networks.
    Espinosa-Soto C
    PLoS Comput Biol; 2018 May; 14(5):e1006172. PubMed ID: 29775459
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Environmental noise, genetic diversity and the evolution of evolvability and robustness in model gene networks.
    Steiner CF
    PLoS One; 2012; 7(12):e52204. PubMed ID: 23284934
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cooperation and conflict in the evolution of individuality. IV. Conflict mediation and evolvability in Volvox carteri.
    Michod RE; Nedelcu AM; Roze D
    Biosystems; 2003 May; 69(2-3):95-114. PubMed ID: 12689724
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Robustness to noise in gene expression evolves despite epistatic constraints in a model of gene networks.
    Draghi J; Whitlock M
    Evolution; 2015 Sep; 69(9):2345-58. PubMed ID: 26200818
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.