These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 18618002)

  • 1. In vitro assessment of optical properties of blood by applying the extended Huygens-Fresnel principle to time-domain optical coherence tomography signal at 1300 nm.
    Popescu DP; Sowa MG
    Int J Biomed Imaging; 2008; 2008():591618. PubMed ID: 18618002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying scattering coefficient for multiple scattering effect by combining optical coherence tomography with finite-difference time-domain simulation method.
    Tsai LH; Yang PN; Wu CC; Lin HY
    J Biomed Opt; 2018 Aug; 23(8):1-9. PubMed ID: 30156065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advanced modelling of optical coherence tomography systems.
    Andersen PE; Thrane L; Yura HT; Tycho A; Jørgensen TM; Frosz MH
    Phys Med Biol; 2004 Apr; 49(7):1307-27. PubMed ID: 15128207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative evaluation of scattering in optical coherence tomography skin images using the extended Huygens-Fresnel theorem.
    Avanaki MR; Podoleanu AG; Schofield JB; Jones C; Sira M; Liu Y; Hojjat A
    Appl Opt; 2013 Mar; 52(8):1574-80. PubMed ID: 23478759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate Monte Carlo simulation of frequency-domain optical coherence tomography.
    Wang Y; Bai L
    Int J Numer Method Biomed Eng; 2019 Apr; 35(4):e3177. PubMed ID: 30690893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of optical coherence tomography systems based on the extended Huygens-Fresnel principle.
    Thrane L; Yura HT; Andersen PE
    J Opt Soc Am A Opt Image Sci Vis; 2000 Mar; 17(3):484-90. PubMed ID: 10708029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An overview of methods to mitigate artifacts in optical coherence tomography imaging of the skin.
    Adabi S; Fotouhi A; Xu Q; Daveluy S; Mehregan D; Podoleanu A; Nasiriavanaki M
    Skin Res Technol; 2018 May; 24(2):265-273. PubMed ID: 29143429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues.
    Wang RK
    Phys Med Biol; 2002 Jul; 47(13):2281-99. PubMed ID: 12164587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple scattering in optical coherence tomography. I. Investigation and modeling.
    Karamata B; Laubscher M; Leutenegger M; Bourquin S; Lasser T; Lambelet P
    J Opt Soc Am A Opt Image Sci Vis; 2005 Jul; 22(7):1369-79. PubMed ID: 16053158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extended depth of focus adaptive optics spectral domain optical coherence tomography.
    Sasaki K; Kurokawa K; Makita S; Yasuno Y
    Biomed Opt Express; 2012 Oct; 3(10):2353-70. PubMed ID: 23082278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical model of optical coherence tomography for system optimization and characterization.
    Feng Y; Wang RK; Elder JB
    J Opt Soc Am A Opt Image Sci Vis; 2003 Sep; 20(9):1792-803. PubMed ID: 12968652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Derivation of a Monte Carlo method for modeling heterodyne detection in optical coherence tomography systems.
    Tycho A; Jørgensen TM; Yura HT; Andersen PE
    Appl Opt; 2002 Nov; 41(31):6676-91. PubMed ID: 12412659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging and characterization of bioengineered blood vessels within a bioreactor using free-space and catheter-based OCT.
    Gurjarpadhye AA; Whited BM; Sampson A; Niu G; Sharma KS; Vogt WC; Wang G; Xu Y; Soker S; Rylander MN; Rylander CG
    Lasers Surg Med; 2013 Aug; 45(6):391-400. PubMed ID: 23740768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple scattering effects in Doppler optical coherence tomography of flowing blood.
    Kalkman J; Bykov AV; Streekstra GJ; van Leeuwen TG
    Phys Med Biol; 2012 Apr; 57(7):1907-17. PubMed ID: 22421380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Closed-form solution for the Wigner phase-space distribution function for diffuse reflection and small-angle scattering in a random medium.
    Yura HT; Thrane L; Andersen PE
    J Opt Soc Am A Opt Image Sci Vis; 2000 Dec; 17(12):2464-74. PubMed ID: 11140505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Layer-based, depth-resolved computation of attenuation coefficients and backscattering fractions in tissue using optical coherence tomography.
    Cannon TM; Bouma BE; Uribe-Patarroyo N
    Biomed Opt Express; 2021 Aug; 12(8):5037-5056. PubMed ID: 34513241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying the influence of Bessel beams on image quality in optical coherence tomography.
    Curatolo A; Munro PRT; Lorenser D; Sreekumar P; Singe CC; Kennedy BF; Sampson DD
    Sci Rep; 2016 Mar; 6():23483. PubMed ID: 27009371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical coherence tomography for in situ monitoring of laser corneal ablation.
    Bagayev SN; Gelikonov VM; Gelikonov GV; Kargapoltsev ES; Kuranov RV; Razhev AM; Turchin IV; Zhupikov AA
    J Biomed Opt; 2002 Oct; 7(4):633-42. PubMed ID: 12421132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering.
    Schmitt JM; Knüttel A; Yadlowsky M; Eckhaus MA
    Phys Med Biol; 1994 Oct; 39(10):1705-20. PubMed ID: 15551540
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.