BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 18618148)

  • 21. Reef corals bleach to resist stress.
    Obura DO
    Mar Pollut Bull; 2009 Feb; 58(2):206-12. PubMed ID: 18996547
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effects of elevated seawater temperatures on Caribbean gorgonian corals and their algal symbionts, Symbiodinium spp.
    Goulet TL; Shirur KP; Ramsby BD; Iglesias-Prieto R
    PLoS One; 2017; 12(2):e0171032. PubMed ID: 28152002
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Repair machinery of symbiotic photosynthesis as the primary target of heat stress for reef-building corals.
    Takahashi S; Nakamura T; Sakamizu M; van Woesik R; Yamasaki H
    Plant Cell Physiol; 2004 Feb; 45(2):251-5. PubMed ID: 14988497
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photosystem II heterogeneity of in hospite zooxanthellae in scleractinian corals exposed to bleaching conditions.
    Hill R; PeterJ R
    Photochem Photobiol; 2006; 82(6):1577-85. PubMed ID: 16961432
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Photo-acclimation of the hermatypic coral Stylophora pistillata while subjected to either starvation or food provisioning.
    Titlyanov EA; Titlyanova TV; Yamazato K; van Woesik R
    J Exp Mar Biol Ecol; 2001 Mar; 257(2):163-181. PubMed ID: 11245874
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Red light represses the photophysiology of the scleractinian coral Stylophora pistillata.
    Wijgerde T; van Melis A; Silva CI; Leal MC; Vogels L; Mutter C; Osinga R
    PLoS One; 2014; 9(3):e92781. PubMed ID: 24658108
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Response of the temperate scleractinian coral Cladocora caespitosa to high temperature and long-term nutrient enrichment.
    Hadjioannou L; Jimenez C; Rottier C; Sfenthourakis S; Ferrier-Pagès C
    Sci Rep; 2019 Oct; 9(1):14229. PubMed ID: 31578398
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of temperature and UV radiation increases on the photosynthetic efficiency in four scleractinian coral species.
    Ferrier-Pagès C; Richard C; Forcioli D; Allemand D; Pichon M; Shick JM
    Biol Bull; 2007 Aug; 213(1):76-87. PubMed ID: 17679722
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A multi-trait systems approach reveals a response cascade to bleaching in corals.
    Gardner SG; Raina JB; Nitschke MR; Nielsen DA; Stat M; Motti CA; Ralph PJ; Petrou K
    BMC Biol; 2017 Dec; 15(1):117. PubMed ID: 29216891
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photophysiological response of Symbiodiniaceae single cells to temperature stress.
    Xiao L; Johansson S; Rughöft S; Burki F; Sandin MM; Tenje M; Behrendt L
    ISME J; 2022 Aug; 16(8):2060-2064. PubMed ID: 35474114
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heat challenge elicits stronger physiological and gene expression responses than starvation in symbiotic Oculina arbuscula.
    Rivera HE; Tramonte CA; Samaroo J; Dickerson H; Davies SW
    J Hered; 2023 Jun; 114(4):312-325. PubMed ID: 36921030
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photosynthetic response of the Mediterranean zooxanthellate coral Cladocora caespitosa to the natural range of light and temperature.
    Rodolfo-Metalpa R; Huot Y; Ferrier-Pagès C
    J Exp Biol; 2008 May; 211(Pt 10):1579-86. PubMed ID: 18456885
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Additive effects of the herbicide glyphosate and elevated temperature on the branched coral Acropora formosa in Nha Trang, Vietnam.
    Amid C; Olstedt M; Gunnarsson JS; Le Lan H; Tran Thi Minh H; Van den Brink PJ; Hellström M; Tedengren M
    Environ Sci Pollut Res Int; 2018 May; 25(14):13360-13372. PubMed ID: 28111719
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Heterotrophy promotes the re-establishment of photosynthate translocation in a symbiotic coral after heat stress.
    Tremblay P; Gori A; Maguer JF; Hoogenboom M; Ferrier-Pagès C
    Sci Rep; 2016 Dec; 6():38112. PubMed ID: 27917888
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Physiological responses and adjustments of corals to strong seasonal temperature variations (20-28°C).
    Sawall Y; Nicosia AM; McLaughlin K; Ito M
    J Exp Biol; 2022 Jul; 225(13):. PubMed ID: 35702952
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differential impact of heat stress on reef-building corals under different light conditions.
    Rosic N; Rémond C; Mello-Athayde MA
    Mar Environ Res; 2020 Jun; 158():104947. PubMed ID: 32250839
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Diel 'tuning' of coral metabolism: physiological responses to light cues.
    Levy O; Achituv Y; Yacobi YZ; Dubinsky Z; Stambler N
    J Exp Biol; 2006 Jan; 209(Pt 2):273-83. PubMed ID: 16391349
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Temporal variability in chlorophyll fluorescence of back-reef corals in Ofu, American Samoa.
    Piniak GA; Brown EK
    Biol Bull; 2009 Feb; 216(1):55-67. PubMed ID: 19218492
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Unique high-temperature tolerance mechanisms of zoochlorellae
    Xiao Y; Gao L; Li Z
    mBio; 2024 Mar; 15(3):e0278023. PubMed ID: 38385710
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Brooded coral offspring physiology depends on the combined effects of parental press and pulse thermal history.
    Wong KH; Goodbody-Gringley G; de Putron SJ; Becker DM; Chequer A; Putnam HM
    Glob Chang Biol; 2021 Jul; 27(13):3179-3195. PubMed ID: 33914388
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.